Technical Report: March 2008 Groundwater Monitoring Program Results and Baseline Ecological Risk Assessment

Former JCI Stanley Tools Site Fowlerville, Michigan

April 2008

Prepared by:

April 7, 2008

Mr. Juan Thomas U.S. Environmental Protection Agency Region 5 Enforcement & Compliance Assurance Branch - RCRA 77 West Jackson Blvd. Chicago, IL 60604-3590

Re: March 2008 Groundwater Sampling Results and the Baseline Ecological Risk Assessment Report for the Former Stanley Tool Site, Fowlerville, MI MID 099 124 299

Dear Mr. Thomas,

Enclosed are three copies of the March 2008 Groundwater Sampling Results and the Baseline Ecological Risk Assessment Report for the Former Stanley Tool Site, Fowlerville, Michigan. The report was prepared for the U.S. Environmental Protection Agency (USEPA) on behalf of Johnson Controls, Inc. in accordance with the December 1, 2006 Final Decision and the approved June 2007 Modified Corrective Measures Implementation Program (CMIP) Work Plan.

Please feel free to contact me at 630.986.2900 if you have any questions on the enclosed document.

Sincerely,

Patricia A. Thomson, P.G.

ENTACT & Associates LLC

Cc: Jesse Padilla, Gonzalez Saggio & Harlan LLP

Date: April 3, 2008

To: Juan Thomas, U. S. EPA

From: Patricia Thomson, P.G., ENTACT

Cc: Jesse Padilla, Gonzalez, Saggio & Harlan LLP

Edward (Ned) Witte, Gonzalez, Saggio & Harlan LLP

Re: Evaluation of the 2008 1st Semi-annual Groundwater Sampling Results and Baseline

Ecological Risk Assessment (BERA) for the former Johnson Controls Inc. (JCI) Stanley

Tool Site, Fowlerville, MI and Proposed Well Relocation/Abandonment Plan

Dear Mr. Thomas:

This technical report presents the results of the 1st Semi-annual 2008 groundwater sampling event conducted between March 4 and March 8, 2008, and the Baseline Ecological Risk Assessment (BERA) for the former JCI Stanley Tool Site in Fowlerville, Michigan (Site) (Figure 1). This report also presents our recommendation for the removal and replacement of certain monitoring wells in the Groundwater Monitoring Program (GWMP), as well as the abandonment of non-GWMP monitoring wells. Our findings and recommendations are as follows.

Introduction

A teleconference was held on February 26, 2008 between the United States Environmental Protection Agency (U.S.EPA), the outside legal counsel for Johnson Controls Inc. (JCI)'s, and ENTACT to discuss proposed plans by the current Property Owner, American Compounding Specialties, Inc. (American Compounding), to begin significant building expansion and flood plain filling activities in late April or early May, 2008. Previous construction activities by American Compounding associated with construction of the initial facility had resulted in damage to two monitoring wells in the approved GWMP (MW-08 and MW-25), and three additional monitoring wells not included in the GWMP which were found to be covered or removed during the July 2007 well survey (MW-06, MW-07, MW-12). The proposed 2008 expansion and filling activities will further impact existing monitoring wells at the Site based on the American Compounding proposed expansion and fill plans presented in Attachment 1. The proposed construction activities will necessitate relocation and replacement of certain monitoring wells currently in the GWMP that have already been damaged or are at risk of being damaged, and proper decommissioning and removal of those monitoring wells not included in the approved GWMP that fall within the proposed expansion or fill footprint.

Pursuant to that discussion, the March 2008 groundwater sampling results along with the

completed BERA results are presented in this Technical Report along with the proposed well relocation and abandonment plan for review and comment by the to the U.S.EPA. Following U.S.EPA review and approval, monitoring wells that currently fall within the planned construction footprint will either be relocated and replaced, or properly decommissioned in accordance with state regulations. American Compounding has been advised that no construction or filling activities should be initiated until the U.S.EPA has reviewed and approved the proposed well relocation or abandonment plan for wells that will be affected by the proposed facility expansion. As American Compounding was looking to start the proposed construction activities in late April or early May, JCI agreed to conduct the 2nd round of groundwater sampling earlier than planned in order to submit the results along with the BERA results as early as possible to allow the U.S.EPA time to review and approve this information before construction activities begin.

1ST SEMI-ANNUAL 2008 GROUNDWATER SAMPLING EVENT

The 1st semi-annual 2008 sampling event was conducted between March 4 and March 6, 2008 in accordance with the approved June 2007 Modified Corrective Measures Implementation Program Work Plan (CMIP Work Plan) and the U.S.EPA Final Decision and Response to Comments - Selection of Remedial Alternatives for the Site, with the omission of two previouslydamaged wells (MW-08 and MW-25). Eleven of the 17 remaining wells in the approved groundwater monitoring program (GWMP) were sampled at this time including MW-02, MW-11, MW-14, MW-17, MW-22, MW-24, MW-26, MW-A2, MW-B-1, MW-B2, and MW-J2. The remaining six monitoring wells in the GWMP could not be accessed due to site conditions (heavy snow and high water levels). These include background wells MW-28 and MW-28C, on-Site MW-21, and off-Site wells MW-OS1, MW-OS3 and MW-OS3C. Well locations are presented in Figure 2. As soon as the water levels fall to a point where the field crew can reach these wells, the six remaining wells will be sampled and results submitted to the U.S.EPA as an Addendum to this April 4, 2008 Technical Report. It is believed that the data from the 11 monitoring wells that were sampled will provide sufficient information to allow for reaching a decision on the proposed relocation/abandonment plan.

Prior to sample collection, static water level (SWL) measurements were collected. The SWLs and calculated groundwater elevations were used to determine groundwater flow direction in the shallow saturated horizon, which correlated with previous findings that shallow flow is toward the Red Cedar River, with a westerly flow direction across the Site on the east side of the river, and a northeasterly direction of flow from the properties west of the river. The groundwater flow potentiometric map, presented in Figure 3, shows that the groundwater flow direction remains consistent with previous sampling events.

The wells were sampled by CTI & Associates, of Brighton, Michigan, as part of the GWMP for the listed parameters shown in the following table:

Well Location	Horizon	Purpose	Frequency	Parameters
MW-02	Shallow	Performance/MNA	Semi-annual	VOCs
MW-08	Shallow	GSI Compliance	Semi-annual	DAMAGED – not sampled

Well Location	Horizon	Purpose	Frequency	Parameters		
MW-11	Shallow	On-Site Plume boundary	Semi-annual	VOCs, total CN-, 10 MI metals [2]		
MW-14	Shallow	GSI Compliance/Off-Site Plume boundary	Semi-annual	VOCs, total CN-		
MW-17	Shallow	GSI Compliance/ Performance/MNA	Semi-annual	VOCs, total CN-, 10 MI metals, Ni, Cr+6, MNA parameters [1]		
MW-21	Shallow	GSI Compliance	Semi-annual	To be sampled in April 2008: VOCs, CN-, 10 MI metals, Ni, Cr+6,		
MW-22	Shallow	GSI Compliance	Semi-annual	VOCs, total CN-, 10 MI metals, Ni, Cr+6,		
MW-24	Shallow	GSI Compliance	Semi-annual	VOCs, total and available CN-, 10 MI metals, Ni, Cr+6,		
MW-25	Shallow	Performance/MNA	Semi-annual	DAMAGED – not sampled		
MW-26	Shallow	GSI Compliance	Semi-annual	VOCs, total CN-, 10 MI metals, Ni, Cr+6		
MW-28	Shallow	Background GW Quality	Semi-annual	To be sampled in April 2008: VOCs, 10 MI Metals, Ni, CN-		
MW-28C	Deep	Background GW Quality	Semi-annual	To be sampled in April 2008: 10 MI Metals		
MW-A2	Deep	GSI Compliance	Semi-annual	VOCs, total CN-, 10 MI metals, Ni, Cr+6,		
MW-B1	Shallow	GSI Compliance	Semi-annual	VOCs, total CN-, 10 MI metals, Ni, Cr+6, MNA parameters [1]		
MW-B2	Deep	Vertical Plume Monitoring	Semi-annual	VOCs, total CN-, 10 MI metals		
MW-J2	Deep	Vertical Plume Monitoring	Semi-annual	VOCs, total and available CN-, 10 MI metals		
MW-OS1C	AW-OS1C Deep Off-site Vertical Plum Monitoring		Semi-annual	To be sampled in April 2008: VOCs, CN-, 10 MI metals		
MW-OS3	W-OS3 Shallow Off-site plume monitoring		Semi-annual	To be sampled in April 2008: VOCs, CN-, 10 MI metals		
MW-OS3C Deep Off-site plume monitoring		Off-site plume monitoring	Semi-annual	To be sampled in April 2008: VOCs, CN-, 10 MI metals		

Green shading indicates the well found damaged during the 2007 well survey

Blue shading indicates wells which could not be accessed due to heavy snow and high water conditions – these wells are slated for sampling as soon as conditions permit – estimate early April 2008

The groundwater samples were collected using low-flow minimal drawdown sampling methodology in accordance with the U.S.EPA *Ground Water Issue Paper – Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA/540/S-95/504 (April 1996).* The samples were submitted to Trimatrix Laboratories of Grand Rapids, Michigan for analysis in accordance with the approved 2003 Quality Assurance Project Plan (QAPP) prepared by Earth Tech/Weston (ETW) and the Work Plan. The complete analytical results are provided in Attachment 2.

^{[1]:} MNA: monitored natural attenuation parameters include sulfates/sulfides, nitrates/nitrites, ferrous/ferric iron, alkalinity, hardness, manganese, chemical oxygen demand, ethane/ethane

^{[2]:} The 10 MI metals include: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, copper, and zinc.

A summary of the analytical results in comparison to the MDEQ Generic Groundwater-Surface Water Interface (GSI) cleanup criteria, Worst Case Maximum Site Concentration values, and the MDEQ Mixing Zone Final Acute Values (FAVs) and in comparison to the July 2007 results are summarized in Table 1.

Metals

Total and dissolved chromium were detected in MW-B2 at levels of 5.7 μ g/L and 1.9 μ g/L respectively, below the Michigan Department of Environmental Quality (MDEQ) generic groundwater-surface water interface (GSI) criterion of 230 μ g/L. As shown in Table 1, the previous July 2007 results showed no detectable levels of total or dissolved chromium at this location. No other dissolved metal exceedences of the calculated GSI criteria, MDEQ-determined Final Acute Values (FAVs) or Reported Worst Case Maximum Site Concentrations were found in any of the 11 wells that were sampled.

Total copper was detected in MW-11 at 4.8 μ g/L, lower than the level of 44 μ g/L found during the 2007 semi-annual sampling event, and falling below the Part 201 GSI criterion of 29 μ g/L. Total cadmium continues to be detected in MW-J2 at levels over the Part 201 criterion, but the corresponding dissolved cadmium results fell below the GSI criterion. This indicates that copper and cadmium are more likely associated with suspended fines in the sample rather than actual groundwater quality, minimizing the potential for migration to the Red Cedar River. Both the total copper and total cadmium values were below the Worst Case Maximum Site Concentrations and the Final Acute Values (FAVs).

Total cyanide was analyzed for all 11 of the groundwater samples. At two location (MW-J2 and MW-24), available (amenable) cyanide (upon which the GSI, FAV and worst case concentration values are based) was also analyzed since the 2007 total cyanide levels at these locations were above the GSI and/or FAV criteria applicable to available cyanide. This would determine if available cyanide was present at levels above the GSI criterion of 5.2 μ g/L or the FAV criterion of 44 μ g/L. Total cyanide was detected at MW-J2 at 45 μ g/L with a corresponding available cyanide concentration of <2 μ g/L, which is below the GSI criterion. Total cyanide was detected in MW-24 at 48 μ g/L, with a corresponding available cyanide concentration of <2 μ g/L, below the GSI criterion. The results support historical sampling results for the Site, which showed the concentrations of free cyanide (when detected) were always less than 30 percent of the measured total cyanide concentration. Therefore the total cyanide concentration of 11 μ g/L at MW-26 and 14 2 μ g/L at MW-17 are considered to represent an associated available cyanide value below the GSI criterion of 5.2 2 μ g/L.

Volatile Organic Compounds

A summary of the analytical results for volatile organic compounds (VOCs) in comparison to the MDEQ Generic GSI cleanup criteria, Worst Case Maximum Site Concentration values, and the MDEQ Mixing Zone FAVs is presented in Table 1.

Exceedences of the GSI values continued to be detected in monitoring well MW-02 which shows the highest levels of residual VOCs at the Site. Cis-1,2-dichloroethene (cis-1,2-DCE) was found

at 600 μ g/L, a decrease from the level found in 2007 and dropping below the GSI criterion of 620 μ g/L. Trichloroethene (TCE) was detected at 3,600 μ g/L above the GSI criterion of 200 μ g/L), slightly higher than the 2007 concentration and rising just above the FAV of 3,500 μ g/L. The TCE concentration remains below the worst case concentration of 4,200 μ g/L upon which the FAV was determined. MW-02 is located along the eastern Site boundary in the vicinity of former SWMU L, and is an upgradient Site well based on the determined shallow westerly groundwater flow direction. The TCE levels at MW-02 have remained relatively constant since 2003, while monitoring wells downgradient of this area show more significant declines from the TCE levels as shown in Table 1. Downgradient well results from MW-24, MW-17, MW-B1 and MW-11 show that levels are significantly lower, ranging between 0.60 μ g/L to 11 μ g/L, below the GSI criterion. This indicates that though there remains residual source material in the vicinity of MW-02, migration of contaminants from this location is limited by effective and ongoing natural attenuation processes.

TCE degradation products cis-1,2-dichloroethene (cis-1,2-DCE), vinyl chloride and ethene and ethane have been detected in the downgradient wells. Cis-1,2-DCE was detected in five downgradient wells (MW-26, MW-17, MW-B1, MW-14 and MW-11) at levels ranging from 0.77 J μ g/L to 300 μ g/L, below the GSI criterion. Vinyl chloride continues to be detected in MW-B1 (56 μ g/L) and MW-17 (26 μ g/L) at levels above the GSI criterion of 15 μ g/L. Though Mixing Zone FAVs were not developed for vinyl chloride, the maximum concentration of vinyl chloride detected on Site was 330 μ g/L detected at MW-17 in November 2003. This maximum value was used by the MDEQ in modeling the estimated surface water concentration at the discharge point and comparison to GSI criteria using the MDEQ 90Q10 flow value for the Red Cedar River of 3.8 cubic feet per second. The predicted concentration at the surface water discharge point was considered within acceptable limits. Therefore the detected vinyl chloride values of 26 to 56 μ g/L, which are an order of magnitude below the 2003 maximum concentration used in the modeling, are considered to be within acceptable limits.

No other VOC compounds were detected in any of the wells in excess of the generic GSI criteria.

MNA Parameters

The analytical results for MNA parameters for the two wells (MW-B1 and MW-17) are summarized in Table 2 in comparison to the 2007 values. The results indicate that degradation is continuing to occur in downgradient locations. Specifically, the analytical data show the presence of TCE degradation by-products at higher levels than the parent compound TCE in downgradient wells. As shown on Table 3, endpoint daughter product, ethane and ethylene, were detected in both MW-17 (0.83 J μ g/L and 1.3 μ g/L) and in MW-B1 (2.3 μ g/L and 1.4 μ g/L) indicating that degradation processes are effectively reducing TCE by-products to the endpoint product ethylene which poses no risk.

BASELINE ECOLOGICAL RISK ASSESSMENT

A BERA was conducted in response to the U.S.EPA December 1, 2006 Final Decision for the JCI Former Stanley Tool Facility, Fowlerville, Michigan which recommended that additional ecological testing be conducted to:

- Ensure contaminants were not present in the stream at levels deemed harmful to aquatic life; and
- Define areas with exceedences falling between preliminary screening criteria, specifically the Threshold Effect Concentrations (TECs) and Probable Effects Concentrations (PECs).
- Utilizes results of the BERA and previous site investigation data to isolate the areas of sediment that will be removed and to establish site-specific cleanup goals

The TECs and PECs are literature-based values for freshwater ecosystems used by the MDEQ as screening criteria. TEC values are defined as threshold concentrations below which adverse effects to the most sensitive of ecological receptors are not expected to occur. PECs are defined as concentrations above which adverse effects to the most sensitive of ecological receptors probably would occur. These adverse effects are typically determined by exposure by the most sensitive of ecological receptors in high-quality, freshwater ecosystems. The Middle Fork of the Red Cedar River is not considered to be a high-quality, freshwater ecosystem but rather a shallow, warm water stream which is too small to be navigated safely and too shallow to support a sports fishery or attract recreational activities. Therefore the TECs and PECs represent worst-case values which were refined using information gathered during the BERA to develop site-specific cleanup levels that are more applicable to the actual stream conditions.

The BERA utilized the Triad Approach as defined in the Sediment Classification Methods Compendium (EPA, 1992b), to further investigate potential ecological risks. The Triad Approach incorporates measures of sediment chemistry (chemical contamination), sediment bioassays (toxicity) and benthic communities (changes in benthic community structure) to support the establishment of site-specific sediment clean-up levels. The complete BERA is presented Attachment 3 and includes sediment sampling, bioassay testing and community survey results, as well as associated risk calculations and assumptions.

BERA Proposed Cleanup Objectives Summary

The BERA addressed the following contaminants of potential concern (COPCs) that have been detected in the sediments of the Red Cedar River; polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs), and select heavy metals.

PCBs and PAHs were not detected or detected infrequently in the BERA sediment samples. As such, a site-specific cleanup level cannot be determined from the BERA dataset for these contaminants.

As presented in the FCMP (ET/W, 2004), an ecological-based, sediment cleanup value of 1 mg/kg, as a surface weighted average concentration (SWAC) was proposed for PCBs. The site-wide SWAC concentration for PCBs calculated from historical site data (0.1526 mg/kg) does not exceed this proposed cleanup level.

For the total PAHs, the mid-point of the TEC and PEC is proposed as the cleanup level (12.205 μ g/kg-total PAH at 1% organic carbon). The maximum normalized total PAH concentration in the historic dataset (ET/W, 2004) is 5.470 μ g total PAH/kg, and does not exceed the proposed cleanup level.

For the remaining COCs in sediments of the Red Cedar River, the calculated BERA cleanup objectives are summarized below along with the literature-based TEC and PEC values cleanup levels:

Total Metals	Chromium	Copper	Lead	Nickel	Zinc
Threshold Effects Concentration (mg/Kg)	43.4	31.6	35.8	22.7	121
Probable Effects Concentration (mg/Kg)	110	150	130	48.6	459
Proposed BERA Cleanup Objectives (mg/Kg)	133	150	130	58	527

The BERA data indicate that those metal concentrations identified in the February 2004 Earth Tech Technical Memorandum: Sediment Quality Survey, Preliminary Sediment Cleanup Criteria and Data Evaluation for the Red Cedar River, Former Stanley Tools, Fowlerville, MI, which fell between the literature-based screening TEC and PEC values are not considered to pose a risk to aquatic life in the Middle Fork of the Red Cedar.

The selection of these cleanup levels are supported by the sediment chemistry data, bioassay results, and community survey results for samples SD-E2-003, SD-C1-005, and SC-A1-006. Concentrations of chromium, lead, nickel and/or zinc exceeded published PEC concentrations in these three samples. However, toxic effects to benthic organisms were observed in the bioassays results only for locations SD-E2-003 and SD-C1-005. At SD-E2-003, lead is clearly the risk driver; at SD-C1-005, nickel and zinc are the risk drivers.

Although the concentrations of chromium, nickel and zinc at SD-A1-006 exceeded their respective PEC values, no toxic effects were found in the bioassay. In addition, MBI values for this location were the lowest observed at any of the community survey locations. Therefore, the observed concentrations of these contaminants at SD-A1-006 are proposed as their clean-up objectives.

The concentration of lead found in sediments at SD-E2-003 (789 mg/kg) is well above published TEC and PEC levels. It is notable however, that lead has not been detected at highly elevated concentrations within any other investigative sediment sample collected in the River at or near the Site. Specifically, of the 133 historic (ET/W, 2004) and BERA-related sediment samples collected and analyzed for lead excluding sample SD-E2-003, the maximum and mean concentrations observed, were 97 mg/kg (at SD-L1), and 13.3 mg/kg, respectively. These values are below the published PEC value (130 mg/kg) for this contaminant. Because of the lack of data between the extreme value detected at SD-E2-003 and the remaining sample population from which inferences may be drawn regarding observable toxic effects, the published PEC value for lead is considered appropriate as a clean-up objective.

Elevated concentrations of copper in sediments in the Red Cedar River are co-located with similar elevated concentrations of chromium, nickel and/or zinc. Although the concentrations of copper in the BERA sediment samples are somewhat elevated in samples SD-E2-003, SD-C1-005, and SC-A1-006, copper does not appear to drive risk in any samples. Thus, the published PEC value for copper is considered appropriate as a clean-up objective.

A comparison of the proposed BERA cleanup objectives to previous sediment sample results shows the following sample locations with one or more metals above the BERA-determined values:

Sample ID	Sample Date	Depth (in)	Total Cr (mg/Kg)	Total Cu (mg/Kg)	Total Ni (mg/Kg)	Total Zn (mg/Kg)
SD-A1	2003	0 - 12	97	85	71	372
SD-C1-005	2007	0-6	77.2	107	267	675
SD-E1	2003	0 - 12	181	230	87	289
SD-E2	2003	0 - 12	1760	1370	189	1930
SD-E2	2003	12 - 24	396	513	165	721
SD-E2-003	2007	0 - 6	112	133	43.5	158
SD-H1	2003	0 - 12	771	563	150	784
SE/RC-1/3	1991	0 - 3	1420	769	374	1590
SE/RC-2/3	1991	0 - 3	240	227	133	232
SE/RC-3/3	1991	0 - 3	74.8	114	77.9	658
SE/RC-3/12	1991	6 - 12	252	421	349	921
SE/RC-5/3	1991	0 - 3	451	302	87.9	425
SE/RC-6/2	1991	6 - 12	448	713	432	2120
SE/RC-7/1	1994	0 - 3	200	175	62.2	163
SE/RC-7/2	1994	6 - 12	690	622	267	466
SE/RC-9/1	1994	0 - 3	170	108	67.1	152
SE/RC-9/2	1994	6 - 12	558	293	117	463
SRC-17	2000	0-0	404	NA	NA	NA
BERA Clean-Up	Objective (1	ng/Kg)	133	150	58	527

Bold value indicate an exceedence of the clean-up objective

The estimated volume of sediments listed above that will be removed as part of the Final Corrective Measures (assuming a 1 to 2 foot removal depth) is approximately 900 to 1,700 cubic yards. Upon sediment removal, confirmation samples (0-6 inch depth) will be collected from each dredge area. A representative average concentration of residual COCs will be calculated to demonstrate compliance with the proposed cleanup objectives.

PROPOSED WELL RELOCATION/ABANDONMENT PLAN

The groundwater monitoring results indicate that conditions of the Site are stable following the soil removal action. Migration of contaminated groundwater to Red Cedar River continues to be under control and groundwater flow directions remain constant. The BERA has allowed the identification and isolation of areas of sediment that will be removed and has established site-specific cleanup goals to ensure protection of ecological receptors over the long term.

The approved groundwater monitoring program was designed to provide sufficient rounds of data to satisfy the Agency that groundwater contaminant migration is, and will remain, under control while natural attenuation mechanisms degrade residual contaminants in shallow groundwater over the long term. The approved GWMP even without sample results for damaged wells MW-25 and MW-08 has effectively accomplished this. As indicated in Section 6.2.1, following two years of semi-annual groundwater sampling (4 sampling events), the GWMP will be assessed to determine whether the program an be modified, reduced or terminated. This GWMP assessment will be performed after the 1st semi-annual event in 2009.

The proposed well relocation and replacement plan has been designed to replace the wells currently in the approved program which either have been damaged or are at risk of being damaged as part of the upcoming facility expansion construction. There are five wells currently in the GWMP that have been or are at risk of being damaged: MW-08, MW-11, MW-25, MW-26 and MW-J2. Based on the proposed expansion footprint provided in Attachment A, MW-11 along the west wall of the facility is considered at risk of being damaged and is proposed for removal and replacement. MW-11 will be relocated approximately 70 feet west of damaged well MW-25 at the base of the bermed area shown in Figure 4. Damaged well MW-25 will then be properly abandoned and not replaced since MW-11 will provide sufficient data in this area of the Site. Damaged well MW-08 will be properly abandoned and replaced in the same proximity at the base of the bermed area as it will be used in lieu of MW-11 in providing information along the Site's south boundary.

MW-26 and MW-J2 are located in the proposed floodplain mitigation area. These wells will be properly abandoned as this area is expected to be prone to flooding under the proposed floodplain filling and mitigation plan currently under review by the MDEQ. MW-26 and MW-J2 will be relocated outside the proposed flood mitigation boundary approximately 100 feet to the south, along the river edge to continue to monitor groundwater at the river boundary. Based on the map, the proposed floodplain mitigation boundary abuts the existing SWMU A to the north which prevents moving the wells in that direction. The west perimeter of the Site nearest the river is then be monitored by MW-22, MW-A2, MW-24, MW-B1 and MW-B2 as well as relocated MW-26 and MW-J2 which is more than adequate to properly monitor groundwater flow to the river

All remaining wells not in the GWMP that are located in either the proposed facility expansion footprint or in the proposed floodplain fill or mitigation areas will be properly abandoned. This includes the following twelve wells: MW-03, MW-04, MW-05, MW-09, MW-10, MW-18, MW-19, MW-E2, MW-JC and MW-BKC1, BKC2 and BKC3.

Three wells not in the GWMP (MW-06, MW-07, and MW-12) located in or adjacent to the existing American Compounding facility were found to have been either covered over or removed as a result of previous construction activities during the 2007 well survey. Therefore these wells cannot be properly abandoned.

An additional three wells located in the fenced area north of the facility (MW-G1, MW-G2 and OW-16) and off-Site well MW-26C, located on approximately 600 feet west of the river could not be found during the well survey. If these wells are found and not at risk of being

compromised as part of the upcoming construction they will be left in place until such time as the GWMP can be terminated.

CONCLUSION

The first year of semi-annual sampling results show that groundwater migration continues to remain under control at the Site following the soil removal action. In the vicinity of upgradient well, MW-02, VOC levels have remained similar to those found in 2003, but there is no significant migration from this location, as shown by downgradient well results. Downgradient wells MW-24, MW-17, MW-B1 and MW-11 show that total VOC levels are significantly lower than detected in 2003 and the concentrations have remained well below the total VOC levels observed in MW-02 since 2003. This indicates that though there remains residual source material in the vicinity of MW-02, migration of contaminants from this location is limited by effective and on-going natural attenuation processes.

Site-specific cleanup objectives determined in the BERA were exceeded in defined areas for chromium, copper, nickel and zinc which will be addressed as part of a sediment removal action. No additional contaminants were present in sediments at levels above the defined risk-based levels

Based on the BERA and groundwater sampling results, the current GWMP, without the two damaged wells (MW-08 and MW-25) has effectively monitored the existing groundwater plume and no significant groundwater migration has been found. This information along with the MNA results shows that natural attenuation mechanisms are effectively controlling contaminant migration in shallow groundwater at the Site. Therefore it is recommended that existing monitoring wells currently not in the GWMP that fall within the proposed expansion or floodplain filling footprints along with damaged well MW-25 be properly abandoned as these wells are not necessary in ensuring the effectiveness of the corrective action conducted at the Site nor the long-term protection of the Red Cedar River. There are five wells currently in the GWMP that have been or are at risk of being damaged by American Compounding's previous and proposed construction activities: MW-08, MW-11, MW-25, MW-26 and MW-J2. These wells will be relocated and replaced to ensure they can be effectively sampled for the next year.

TABLES

	Shapp.		pr /		0	(L		+2	0/	mot	·		.0/4		U				
Well ID: Sample Date:	MW-02 7/31/2007	MW-02 3/5/2008	MW-11 [1] GSI Comp 7/31/2007	MW-11 [1] GSI Comp 3/5/2008	MW-14 [1] GSI Comp 8/1/2007	MW-14 [1] GSI Comp 3/6/2008	MW-17 [1] GSI Comp 8/1/2007	MW-17 [1] GSI Comp 3/5/2008	MW-21 [1] GSI Comp 8/1/2007	MW-21 [1] GSI Comp	MW-22 [1] GSI Comp 8/1/2007	MW-22 [1] GSI Comp 3/5/2008	MW-24 [1] GSI Comp 8/1/2007	MW-24 [1] GSI Comp 3/6/2008	MW-26 ^[1] GSI Comp 8/1/2007	MW-26 [1] GSI Comp 3/5/2008	MDEQ GENERIC GSI Criteria	Final Acute Value	Reported Worst-case Maximum Concentration
Compound	TWANTEN PORTON PARKET.		V23821623300400040800400	101000000000000000000000000000000000000	Chiphad Dathersand		Market Control of the Print	APPROPRIEST CONTROL		(ACCORDED)	PARCHES CONTROL	-17,000,000,000,000,000	Committee and the committee of the commi				(ug/L) [2]	(ug/L) [3]	(ug/L) [3]
Volatile Organic Compounds (VOC	e) (ua/L)																(-9/	1 (-9/-/	(-9-7
Acetone	<60	<250	<1.2	<5.0	<1.2	<5.0	1.8 J	1.3 JB	1.4 J	na	2.4 J	4.6 JB	1.4 J	<5.0	<1.2	<5.0	1,700	-	-
Benzene	<5.9			<1.0	<0.12	<1.0		0.18 J	<0.12			0.38 J	<0.12	<1.0	<0.12	<1.0	200 (X)		
Chlorobenzene	<6.0			<1.0	<0.12	<1.0				300,000		3.5	8	4.6	<0.12	<1.0	47		
1,1-DCA	<3.8			0,26 J	2.7	2.4	2.9					<1.0	<0.076	<1.0	0.57 J	0.45 J	740	-	
1,1-DCE	<7.0			<1.0	0.35 J	<1.0				na		<1.0	<0.076	<1.0	< 0.14	<1.0	65 (X)		
cis-1,2-DCE	800			0.77 J	23	The same of the sa				na		<1.0	<0.14	<1.0	26	15	620	1 -	910
trans-1,2-DCE	32 J	23 J	<0.16	<1.0	2.6			77.77.70		Sitting	30.000.000	<1.0	<0.17	<1.0	0.46 J	<1.0	1,500	-	-
Toluene	4.0 J	<50		0.11 J	0.29 J	<1.0	0,22 J	0.080 J	0.29 J	na		<1.0	0.090 J	<1.0	0.46 J	<1.0	140	-	-
TCE	3,400	3,600	0.69 J	3.0	<0.17	<1.0	7.1			na		<1.0	<0.17	0.60 J	0.64 J	<1.0	200 (X)	3,500	4,200
Vinyl Chloride	<8.7	<50	VI V	<1.0	6,50,60,03,60	4.4	48	h100x8024		Date Se			A20302-10-3N					-	300 [4]
Xvienes (total)	<0.7		<0.17 <0.23	<2.0	12 <0.23	<2.0	<0.23			na		<1.0	<0.17	<1.0	13	7.4	15	ND	
1,2-Dichlorobenzene	-						100000000000000000000000000000000000000	Accompany		na		<2.0	<0.23	<2.0	<0.23	<2.0	10	-	-
1,4-Dichlorobenzene	<3.3	PRODUCTION AND ADDRESS OF THE PARTY OF THE P		<1.0	< 0.065	<1.0	0.74 J	0.36 J	< 0.065	na		<1.0		<1.0	<0.065	<1.0	16		
	<6.6		<0.13	<1.0	<0.13	<1.0	0.42 J	0.26 J	<0.13	na	-	<1.0	0.26 J	<1.0	<0.13	<1.0	13	-	-
1,2,4-Trimethylbenzene	<6.6			<1.0	<0.13	<1.0	<0.13					<1.0		<1.0	<0.13	<1.0	17	-	-
Methylene chloride	<2.5	8.5 J	<0.051	<1.0	<0.051	<1.0	<0.051	<1.0	<0.051	na	<0.051	<1.0	<0.051	<1.0	<0.051	<1.0	940 (X)	27	-
10 MI Metals (ug/L)																			
Arsenic (dissolved)	na	na	<0.74	<5.0	na	na	4.1 J	<5.0	4.2 J	na	66	64	68	30	6.6	2.7 J	l NA	680	161
Arsenic (dissolved)	na			<5.0 <5.0	na na	na	3.4 J	1.1 J		Dilling-S		86		36		4.6 J	150 (X)	680	161
Barium (dissolved)	na			57 J	na	na	130		410			360	190	180		110		- 000	101
Barium (total)	na	na	110	65 J	na	na	130					410	200	200	190	120	1,900 (G,X)	-	
Cadmium (dissolved)	na	na	<0.062	<0.20	na	na	<0.062			na		<0.20	<0.062	<0.20	<0.062	<0.20	6.2 (G,X)	77	13
Cadmium (dissolved)	na		0.069 J	0.066 J	na	na	<0.062	<0.20		na		<0.20	<0.062	<0.20	<0.062	<0.20	6.2 (G,X)	77	13
Chromium (dissolved)	na	na	0.009 J	5	<0.31	na	<0.002			na		<1.0	<0.002	<1.0	<0.002	<1.0	230 (G,X)	-	-
Chromium (total)	na	na	1.4	4.8	na	na	<0.31	<1.0 <1.0		na		0.32 J	<0.31	<1.0	<0.31	<1.0	230 (G,X) 230 (G,X)		
Chromium hexavalent (dissolved)	na	na	na	na	na	na				na	530557007	0.32 J	<0.5	<5.0	<0.5	<5.0	11	32	20
Chromium hexavalent (dissolved)	na	na	na	na	na	na	0.8 J	na		na		1.2 J	<0.5	<5.0	0.8 J	1.7 J	11	32	20
Copper (dissolved)	na	na	3.9	4.3	na	na		0.67 J	0.67 J	na	-	0.62 J	<0.33	0.65 J	0.42 J	1.7 3	29 (G)	144	103
Copper (dissolved)	na	na	44	4.8	na	na		1.0 J	1,4	na		1.2	0.33 J	<1.0	29	0.49 J	29 (G)	144	103
Cvanide (total)	na	na		<5.0	<1.20	<5.0	100000000000000000000000000000000000000		the state of the s	na		2.1 J	63.9	<1.0 48	9.7	0.49 3	NA NA	NA	103
Cyanide (total)	na			na	na na					na		na	na	<2.0	na	na	5.2	44	10
Lead (total)	na			<1.0		na		100-20		na na		<1.0	<0.33	<1.0	0.83 J	<1.0	45 (G,X)	- 44	10
Mercury (dissolved)				THE RESIDENCE AND ADDRESS OF THE PERSON NAMED IN COLUMN 1	na <0.039	na		20,000,000	1,450,410,10,40,64640	The state of the s		32.5032.20	100 April 2010 April 2	- Continues of	- Committee of the Comm	<0.20	0.0013		
Mercury (dissolved)	na na	na na	<0.039 <0.039	<0.20 <0.20	<0.039	na	<0.039 <0.039	<0.20	<0.039 <0.039	na		<0.20	<0.039 <0.039	<0.20 <0.20	<0.039 <0.039	<0.20	0.0013	-	
Nickel (dissolved)	na				-	na		<0.20		na		<0.20	-		<0.039				
Nickel (total)	na na	na	7.9 J	na na	na	na	The state of the s	10000		na		12	2.5 J 2.8 J	2.2 J	15	12 10	170 (G) 170 (G)	5,800 5,800	1,180 1,180
Selenium (dissolved)		na			na	na				na			<0.92	3.9 J	<0.92	<1.0		5,800	1,180
Selenium (dissolved) Selenium (total)	na na	na na		<1.0 <1.0	na	na				na		<1.0	0.92 0.98 J	<1.0	<0.92	<1.0	5		
1					na	na				na	an and the second secon	<1.0		<1.0				1	-
Silver (dissolved) Silver (total)	na			<0.20	na	na		<0.20		na		<0.20	<0.12	<0.20	<0.12	<0.20	0.2 (M)	-	O THE STATE OF THE
Zinc (dissolved)	na na	na		<0.20 180	na	na					-	<0.20	<0.12	<0.20	<0.12 1.7 J	<0.20 5.0 J	0.2 (M)		*
Zinc (dissolved)	na na	na na		220 B	na	na		5.5 J	1.6 J	na		4.9 J	6.9 J	5.7 J			380 (G)		-
Zinc (total)	na	na	1 280	220 B	na	na	35	18	26	na	50	23	34	6.5 J	35	12	380 (G)	380	

Notes:

- [1]: Compliance monitoring well
- [2]: MDEQ Part 201 RRD Op Memo No. 1, January 23, 2006 and Earth Tech/Weston Solutions 2004 Human Health Environmental Indicator
- [3]: WHMD Final Determination of a Mixing Zone Request Letter, February 23, 2006 and an MDEQ Interoffice Communication, December 13, 2005
- [4]: In Final Migration of Contaminated Groundwater Under Control Environmental Indicator (EI) Report, the maximum concentration of vinyl chloride detected at Site was 300 ug/L. na indicates "not analyzed"
- B: Background as defined by R 299.5701(b) may be substituted if higher than the calculated cleanup criterion.
- G: GSI criterion depends on the pH or water hardness, or both, of the receiving surface water.
- J: Analyte was detected, but the concentration is greater than the MDL and less than the RL.
- M: Calculated criterion is below the analytical target detection limit; therefore, the criterion defaults to the target detection limit.
- X: The GSI criterion shown in the generic cleanup criterion tables is not protective for surface water that is used as a drinking water source.
- NA: Criterion or value is not available or, in the case of background and chemical abstract service numbers, not applicable.

ND: FAV not developed

Black BOLD values indicate the value exceeds the GSI criterion

Red BOLD values indicate the value exceeds the FAV +2 = 100 Supply Events exceeded Charles y Joseph we volude +1 = 1000 Texast sampling event leveled and screppling volude -1 = Henry sampling event (2007) and day in the same Ol = 100 billion is expected says to live to me = unanglyzed constitution to previous same is event

1 1 t = ving is sed constituents levent Sample such constituents be a Sample west to = specific constitues when by sed

																	11000	r -	
Well ID:	MW-02	MW-02	MW-11 [1]	MW-11 [1]	MW-14 [1]	MW-14 [1]	MW-17 ^[1]	MW-17 [1]	MW-21 [1]	MW-21 [1]	MW-22 [1]	MW-22 [1]	MW-24 [1]	MW-24 [1]	MW-26 [1]	MW-26 [1]	MDEQ	Final Acute	Reported
Well ID.	W W -02	101 00 -02	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	GSI Comp	12 (45)			GENERIC		Worst-case
Sample Date:	7/31/2007	3/5/2008	7/31/2007	3/5/2008	8/1/2007	3/6/2008	8/1/2007	3/5/2008	8/1/2007	na	8/1/2007	3/5/2008	8/1/2007	GSI Comp	GSI Comp	GSI Comp	GSI Criteria	Value	Maximum
Compound	170172007	3/3/2000	1/31/2007	3/3/2000	0/1/2007	3/0/2000	0/1/2007	3/3/2006	6/1/2007	IIa	6/1/2007	3/3/2006	6/1/2007	3/6/2008	8/1/2007	3/5/2008	(v.= (1 \ [2]	//I \ [3]	Concentration
	a) (ma/l)																(ug/L) [2]	(ug/L) [3]	(ug/L) [3]
Volatile Organic Compounds (VOC Acetone		-050	- 10	0			4.0.1	4 0 15	31.000 1			7 O ID				(2)			
Benzene	<60 <5.9	<250	<1.2					1.3 JB	1.4 J			4.6 JB	1.4 J	<5.0	<1.2			-	
		<50	<0.12					0.18 J	<0.12			0.38 J	<0.12	<1.0	<0.12	0.0000000000000000000000000000000000000			*
Chlorobenzene 1,1-DCA	<6.0 <3.8	<50		5/1/2000				1.2				3.5		4.6	<0.12		47	1.51	-
1,1-DCA	<3.8 <7.0	<50	0.89 J	0.26 J	2.7			1.4	<0.076					<1.0	0.57 J	0.45 J	740	-	
cis-1.2-DCE		<50		<1.0	- Interest to the last			<1.0	<0.14	na		<1.0		<1.0	<0.14	<1.0		A	
trans-1,2-DCE	800 32 J	600		0.77 J	23			30	<0.17	na	3.20*3.51.12.55	<1.0		<1.0	26	15			910
VALUE OF THE PROPERTY OF THE P	275/07/12/0	23 J	<0.16					13	<0.16			<1.0		<1.0	0.46 J	<1.0			-
Toluene TCE	4.0 J	<50	<0.072		0.29 J			0.080 J	0.29 J	na		<1.0	0.090 J	<1.0	0.36 J	<1.0	140	-	4.000
	3,400	3,600	0.69 J	3.0			2.00	3.6		100,000	20000000000	<1.0		0.60 J	0.64 J	<1.0		3,500	4,200
Vinyl Chloride	<8.7	<50	<0.17	<1.0				26						<1.0	13			ND	300 [4]
Xylenes (total)	<12	<100	<0.23	<2.0				<2.0	<0.23	/#2.00		<2.0	<0.23	<2.0	<0.23	17 (form 1 (a))		*	-
1,2-Dichlorobenzene	<3.3	<50	<0.065	<1.0	FORMULE (1972)	<1.0	20000 Table 10000 10000	0.36 J	< 0.065	na		<1.0		<1.0	<0.065	<1.0	Nie Control of the Co	120	
1,4-Dichlorobenzene	<6.6	<50	<0.13	<1.0				0.26 J	<0.13					<1.0	<0.13	1,10110		-	•
1,2,4-Trimethylbenzene	<6.6	<50	<0.13	<1.0				<1.0				10000		<1.0	<0.13	1000		14	
Methylene chloride	<2.5	8.5 J	<0.051	<1.0	<0.051	<1.0	< 0.051	<1.0	<0.051	na	< 0.051	<1.0	<0.051	<1.0	< 0.051	<1.0	940 (X)		
10 MI Metals (ug/L)	W		1			100													
Arsenic (dissolved)	na	na		<5.0				<5.0		na				30			NA	680	161
Arsenic (total)	na	na	< 0.74	<5.0	na			1.1 J	11	10000			11,000 /119	36			150 (X)	680	161
Barium (dissolved)	na	na	110	57 J	na			81 J	410			360		180	170			*	*
Barium (total)	na	na	110	65 J	na	0.027		84 J	470	-		410	200	200	190	120			-
Cadmium (dissolved)	na	na	<0.062	<0.20	na			<0.20	< 0.062	na		<0.20	<0.062	<0.20	< 0.062	<0.20	The second secon	77	13
Cadmium (total)	na	na	0.069 J	0.066 J	na			<0.20	0.10 J	na		<0.20	<0.062	<0.20	< 0.062	<0.20		77	13
Chromium (dissolved)	na	na	0.96 J	5	<0.31	na		<1.0	<0.31	na		<1.0	<0.31	<1.0	<0.31	<1.0		/ = :	
Chromium (total)	na	na	1.4	4.8				<1.0	<0.31	na		0.32 J	<0.31	<1.0	<0.31	<1.0		-	
Chromium hexavalent (dissolved)	na	na	na		na			na	0.6 J	na		0.7 J	<0.5	<5.0	<0.5	7.000000000		32	20
Chromium hexavalent (total)	na	na	na		na			na	1.3 J	na		1.2 J	<0.5	<5.0	0.8 J	1.7 J	11	32	20
Copper (dissolved)	na	na	3.9	000000			- 3.0.0.0.0	0.67 J	0.67 J	na	The state of the s	0.62 J	<0.33	0.65 J	0.42 J	1.0		144	103
Copper (total)	na	na	44	4.8			15.0000	1.0 J	1.4	177,000	200			<1.0	29	HELENO COLUMN	29 (G)	144	103
Cyanide (total)	na	na	<1.20	<5.0				14	<1.20	na		2.1 J	63.9	48	9.7			NA	
Cyanide (available)	na	na	na					na	na	na		na		<2.0	na	na		44	10
Lead (total)	na	na	1.3	<1.0				<1.0	<0.33			<1.0	2,50,50	<1.0	0.83 J	<1.0			-
Mercury (dissolved)	na	na	<0.039	<0.20	< 0.039	na		<0.20	< 0.039	na	200 2110 2200 200 200	<0.20	<0.039	<0.20	< 0.039	<0.20	0.0013		
Mercury (total)	na	na	<0.039	<0.20	< 0.039	na		<0.20	< 0.039	na		<0.20	<0.039	<0.20	<0.039		0.0013		-
Nickel (dissolved)	na	na	7.9 J	na				30	3.5 J	na				2.2 J	13			5,800	1,180
Nickel (total)	na	na	12	na				33	3.8 J	na	1977/19	7.000		3.9 J	15			5,800	1,180
Selenium (dissolved)	na	na	0.94 J	<1.0	na	711000		<1.0	< 0.92	70.000		<1.0		<1.0	<0.92	11010-		1.72	-
Selenium (total)	na	na	<0.92	<1.0	na			<1.0	<0.92					<1.0	<0.92		and the second s	(e)	
Silver (dissolved)	na	na	<0.12	<0.20	na			<0.20	<0.12	-			<0.12	<0.20	<0.12	-	0.2 (M)	**	
Silver (total)	na	na	<0.12	<0.20	na	ASSTOR		<0.20	<0.12	THE STATE OF THE S	337000000000000000000000000000000000000	ALIDE METERS	<0.12	<0.20	<0.12		0.2 (M)	*	2
Zinc (dissolved)	na	na	170	180	na			5.5 J	1.6 J	na		4.9 J	6.9 J	5.7 J	1.7 J		380 (G)		
Zinc (total)	na	na	280	220 B	na	na	35	18	26	na	50	23	34	6.5 J	35	12	380 (G)	(-)	

Notes:

- [1]: Compliance monitoring well
- [2]: MDEQ Part 201 RRD Op Memo No. 1, January 23, 2006 and Earth Tech/Weston Solutions 2004 Human Health Environmental Indicator
- [3]: WHMD Final Determination of a Mixing Zone Request Letter, February 23, 2006 and an MDEQ Interoffice Communication, December 13, 2005
- [4]: In Final Migration of Contaminated Groundwater Under Control Environmental Indicator (EI) Report, the maximum concentration of vinyl chloride detected at Site was 300 ug/L. na indicates "not analyzed"
- B: Background as defined by R 299.5701(b) may be substituted if higher than the calculated cleanup criterion.
- G: GSI criterion depends on the pH or water hardness, or both, of the receiving surface water.
- J: Analyte was detected, but the concentration is greater than the MDL and less than the RL.
- M: Calculated criterion is below the analytical target detection limit; therefore, the criterion defaults to the target detection limit.
- X: The GSI criterion shown in the generic cleanup criterion tables is not protective for surface water that is used as a drinking water source.
- NA: Criterion or value is not available or, in the case of background and chemical abstract service numbers, not applicable.
- ND: FAV not developed

Black BOLD values indicate the value exceeds the GSI criterion

Red BOLD values indicate the value exceeds the FAV

											p						
		NA 22-25 90 40	8/30/09/09/09	CARLOS STORM	[41]	serección de la PAI	//0-754/0-100/0360% [4]	[4]	100000000000000000000000000000000000000	Dance City		versemen eigen	The ANALYSI TO SEA PROPERTY OF THE SECTION OF THE S	CONTRACTOR TO	MDEQ	Final Acute	Reported
Well ID:	MW-28	MW-28	MW-28C	MW-28C	MW-A2 [1]	MW-A2 [1]	MW-B1 ^[1]	MW-B1 ^[1]	MW-B2	MW-B2	MW-J2	MW-J2	MW-OS1C	MW-OS1C	GENERIC	7,110	worst-case
	7/04/0007	Massocia		10000 0	GSI Comp	GSI Comp	GSI Comp	GSI Comp	TOTAL VALUE AND ADDRESS.	-171				200	GSI Criteria	Value	Maximum
Sample Date:	7/31/2007	na	7/31/2007	na	8/1/2007	3/5/2008	8/1/2007	3/5/2008	8/1/2007	3/4/2008	8/1/2007	3/4/2008	8/2/2007	na			Concentration
Compound															(ug/L) [2]	(ug/L) [3]	(ug/L) [3]
Volatile Organic Compounds (VOC																	
Acetone	<1.2	na	na	na	<1.2		<6.0	<10		<5.0	<1.2	<5.0		na	1,700		=
Benzene	<0.12	na		na	<0.12	<1.0	<0.59	<2.0	<0.12	<1.0	<0.12	<1.0	<0.12	na	200 (X)	-	-
Chlorobenzene	<0.12	na	na	na	<0.12	<1.0	<0.60	<2.0	<0.12	<1.0	<0.12	<1.0	<0.12	na	47	-	-
1,1-DCA	<0.076	na		na	< 0.076	<1.0	12	8.8		<1.0	<0.076	<1.0		na	740	17	-
1,1-DCE	<0.14	na	na	na	<0.14	<1.0	2.8 J	2.0	<0.14	<1.0	<0.14	<1.0	<0.14	na	65 (X)		
cis-1,2-DCE	<0.17	na		na	0.76 J	<1.0	470	300		<1.0	<0.17	<1.0	<0.17	na	620	-	910
trans-1,2-DCE	<0.16	na	na	na	<0.16	<1.0	68	46		<1.0	<0.16	<1.0	<0.16	na	1,500	-	-
Toluene	<0.0072	na		na	0.080 J	<1.0	<0.36	<2.0		0.11 J	0.35 J	0.080 J	0.64 J	na	140		
TCE	<0.17	na		na	<0.17	<1.0	9	11		<1.0	<0.17	<1.0	<0.17	na	200 (X)	3,500	4,200
Vinyl Chloride	<0.17	na		na	<0.17	<1.0	58	56		<1.0		<1.0	<0.17	na	15	ND	300 [4]
Xylenes (total)	<0.23	na		na	<0.23	<2.0	< 0.64	<4.0		<2.0		<2.0	0.25 J	na	(+)	-	
1,2-Dichlorobenzene	<0.065	na		na	<0.065	<1.0	<0.33	<2.0		<1.0		<1.0	< 0.065	na	16	-	-
1,4-Dichlorobenzene	<0.13	na		na	<0.13	<1.0		<2.0		<1.0		<1.0	<0.13	na	13		
1,2,4-Trimethylbenzene	<0.13	na		na	<0.13	<1.0	<0.66	<2.0		0.51 J	<0.13	<1.0	<0.13	na	17	57	
Methylene chloride	<0.051	na	na	na	<0.051	<1.0	<0.25	0.28 J	<0.051		<0.051		<0.051	na	940 (X)		•
Description of the same																	
10 MI Metals (ug/L)			W-											VI.			
Arsenic (dissolved)	4.9 J	na				1000001000	6.4	4.4 J				11	0.0700	na	NA	680	161
Arsenic (total)	4.8 J	na		na	6.5	100000	0.0000	6.3	-	14	2000	11			150 (X)	680	161
Barium (dissolved)	150	na		na	140	140	130	110		110		190		na	1,900 (G,X)	•	
Barium (total)	170	na		na	140	150	140	120		140		180	68 J	na	1,900 (G,X)	-	-
Cadmium (dissolved)	<0.062	na		na	<0.062	<0.20	<0.062	<0.20	< 0.062	<0.20	1	0.53	< 0.062	na	6.2 (G,X)	77	13
Cadmium (total)	<0.062	na		na	<0.062	<0.20	<0.062	<0.20	< 0.062	<0.20	6.9	1.2	< 0.062	na	6.2 (G,X)	77	13
Chromium (dissolved)	<0.31	na	<0.31	na	<0.31	<1.0	<0.31	<1.0		5.7		<1.0	1.3		230 (G,X)		-
Chromium (total)	<0.31	na		na	1.8	1.7		<1.0	0.40 J	1.9		4.8	-	na	230 (G,X)	-	
Chromium hexavalent (dissolved)	na	na		na	<0.5	<5.0	<0.5	na	100000	na	15.57.2	, na	na	na	11	32	20
Chromium hexavalent (total)	na	na	- THE PARTY	na	A.L. Composition of	4.7 J	<0.5	na		na		na	na	na	11	32	20
Copper (dissolved)	<0.33	na	0.73 J	na	1.1	1.3	0.63 J	<1.0		0.63 J	1.1	0.81 J	7	na	29 (G)	144	103
Copper (total)	1.1	na	12	na	1.9	3.6		0.61 J	0.67 J	0.61 J	12	1.3	2.1	na	29 (G)	144	103
Cyanide (total)	<1.20	na	101104013	na	<1.20	<5.0	<1.20	<5.0		<5.0	100000000000000000000000000000000000000	45			NA	NA	
Cyanide (available)	na	na	na	na	na	na		na		na		<2.0	na	na	5.2	44	10
Lead (total)	0.95 J	na	0.57 J	na	< 0.33	<1.0	<0.33	<1.0		<1.0		0.67 J	2.1	na	45 (G,X)	-	-
Mercury (dissolved)	<0.039	na	-	na	<0.039	<0.20	<0.039	<0.20	< 0.039	<0.20	<0.039	<0.20	< 0.039	na	0.0013		
Mercury (total)	<0.039	na	100000000000000000000000000000000000000	na	<0.039	<0.20	< 0.039	<0.20		<0.20	<0.039	<0.20	<0.039	na	0.0013		- 4 400
Nickel (dissolved)	2.6 J	na		na	3.3 J	4.0 J	130	140		na		na		na	170 (G)	5,800	1,180
Nickel (total)	2.8 J	na	2.0 J	na	5.5 J	7.9 J	150	160		na		na		na	170 (G)	5,800	1,180
Selenium (dissolved)	<0.92	na		na	<0.92	<1.0	<0.92	<1.0		<1.0		<1.0	1.3		5	-	-
Selenium (total)	<0.92	na	<0.92	na	<0.92	<1.0	<0.92	<1.0		<1.0		<1.0	1.2		5		-
Silver (dissolved)	<0.12	na		na	0.14 J	<0.20	<0.12	<0.20		<0.20		<0.20	<0.12		0.2 (M)	-	*
Silver (total)	<0.12	na		1,000	<0.12	<0.20	0.15 J	<0.20	* A TOTAL CO. C.	<0.20	<0.12	<0.20	<0.12	na	0.2 (M)		-
Zinc (dissolved)	1.6 J	na		na		9.7 J	44	38		7.3 J	3.7 J	5.7 J	6.4 J	na	380 (G)	-	<u>-</u>
Zinc (total)	170	na	20	na	6.6 J	17	85	62	5.2 J	9.6 J	63	20	7.6 J	na	380 (G)	- 35	

Notes.

- [1]: Compliance monitoring well
- [2]: MDEQ Part 201 RRD Op Memo No. 1, January 23, 2006 and Earth Tech/Weston Solutions 2004 Human Health Environmental Indicator
- [3]: WHMD Final Determination of a Mixing Zone Request Letter, February 23, 2006 and an MDEQ Interoffice Communication, December 13, 2005
- [4]: In Final Migration of Contaminated Groundwater Under Control Environmental Indicator (EI) Report, the maximum concentration of vinyl chloride detected at Site was 300 ug/L. na indicates "not analyzed"
- B: Background as defined by R 299.5701(b) may be substituted if higher than the calculated cleanup criterion.
- G: GSI criterion depends on the pH or water hardness, or both, of the receiving surface water.
- J: Analyte was detected, but the concentration is greater than the MDL and less than the RL.
- M: Calculated criterion is below the analytical target detection limit; therefore, the criterion defaults to the target detection limit.
- X: The GSI criterion shown in the generic cleanup criterion tables is not protective for surface water that is used as a drinking water source.
- NA: Criterion or value is not available or, in the case of background and chemical abstract service numbers, not applicable.
- ND: FAV not developed

Black BOLD values indicate the value exceeds the GSI criterion

Red BOLD values indicate the value exceeds the FAV

(and the second							
					MDEQ	Final Acute	Reported
Well ID:	MW-OS3	MW-OS3	MW-OS3C I	MW-OS3C	GENERI	C Final Acute	Worst-case
					GSI Crite	ia Value	Maximum
Sample Date:	8/2/2007	na	8/2/2007	na			Concentration
Compound					(ug/L) ^{[2}	(ug/L) [3]	(ug/L) [3]
Volatile Organic Compounds (VOC	s) (ug/L)						
Acetone	<1.2	na		na	1,700		
Benzene	0.16 J	na		na	200 (X)	-	
Chlorobenzene	<0.12	na		na	47		
1,1-DCA	2.6	na		na	740		
1,1-DCE		na		na	65 (X)	-	Name and the second
cis-1,2-DCE		na	The state of the s	na	620		910
trans-1,2-DCE		na	108000000000000000000000000000000000000	na	1,500		
Toluene	0.47 J	na		na	140		
TCE		na		na	200 (X)	3,500	4,200
Vinyl Chloride	14	na		na	15	ND	300 [4]
Xylenes (total)	0.24 J	na		na			-
1,2-Dichlorobenzene		na		na	16		-
1,4-Dichlorobenzene	<0.13	na	15.412.513.52.513.5	na	13	•	
1,2,4-Trimethylbenzene		na		na	17		-
Methylene chloride	<0.051	na	<0.051	na	940 (X)	-	
40.881.88-4-1-(//-)							
10 MI Metals (ug/L)	441		0.74			000	101
Arsenic (dissolved) Arsenic (total)	4.1 J 4.4 J	na		na na	NA 150 (X)	680 680	161
Barium (dissolved)	200	na na		na	4 000 (0		101
Barium (total)	63 J	na		na	1,900 (G, 1,900 (G,		
Cadmium (dissolved)	<0.062	na		na	6.2 (G,)		13
Cadmium (total)	0.13 J	na		na	6.2 (G,X		13
Chromium (dissolved)	1.8	na	Participation of the Control of the	na	230 (G,)		-
Chromium (total)	0.33 J	na		na	230 (G,)		-
Chromium hexavalent (dissolved)	na	na		na		32	20
Chromium hexavalent (total)	na	na		na	11	32	20
Copper (dissolved)	9.2	na		na	29 (G)	144	103
Copper (total)	0.64 J	na		na	29 (G)	144	103
Cyanide (total)	<1.20	na		na	NA NA	NA	
Cyanide (available)		na		na	5.2	44	10
Lead (total)	< 0.33	na	< 0.33	na	45 (G,X		
Mercury (dissolved)	0.048 J	na		na	0.0013	-	
Mercury (total)	0.044 J	na		na	0.0013		
Nickel (dissolved)	2.9 J	na	1.4 J	na	170 (G	5,800	1,180
Nickel (total)	3.2 J	na	1.8 J	na	170 (G	5,800	1,180
Selenium (dissolved)	1.3	na		na	5		-
Selenium (total)	<0.92	na	< 0.92	na	5	-	
Silver (dissolved)	<0.12	na	<0.12	na	0.2 (M)		
Silver (total)	<0.12	na		na	0.2 (M)		
Zinc (dissolved)	8.8 J	na		na	380 (G		
Zinc (total)	8.1 J	na	7.0 J	na	380 (G		

Notes:

- [1]: Compliance monitoring well
- [2]: MDEQ Part 201 RRD Op Memo No. 1, January 23, 2006 and Earth Tech/Weston Solutions 2004 Human Health Environmental Indicator
- [3]: WHMD Final Determination of a Mixing Zone Request Letter, February 23, 2006 and an MDEQ Interoffice Communication, December 13, 2005
- [4]: In Final Migration of Contaminated Groundwater Under Control Environmental Indicator (EI) Report, the maximum concentration of vinyl chloride detected at Site was 300 ug/L. na indicates "not analyzed"
- B: Background as defined by R 299.5701(b) may be substituted if higher than the calculated cleanup criterion.
- G: GSI criterion depends on the pH or water hardness, or both, of the receiving surface water.
- J: Analyte was detected, but the concentration is greater than the MDL and less than the RL.
- M: Calculated criterion is below the analytical target detection limit; therefore, the criterion defaults to the target detection limit.
- X: The GSI criterion shown in the generic cleanup criterion tables is not protective for surface water that is used as a drinking water source.

NA: Criterion or value is not available or, in the case of background and chemical abstract service numbers, not applicable.

ND: FAV not developed

Black BOLD values indicate the value exceeds the GSI criterion Red BOLD values indicate the value exceeds the FAV

Table 2
Historical Summary of Detected Monitored Natural Attenuation Parameters in Groundwater Samples
Former Stanley Tools Site
Fowlerville, Michigan

Well ID: Sample Date: Compound	W-1-1	MW-17 ^[1] GSI Comp 3/5/2008	MW-B1 ^[1] GSI Comp 8/1/2007	MW-B1 ^[1] GSI Comp 3/5/2008	MDEQ GENERIC GSI Criteria (ug/L) [2]
MNA Physical/Chemical Parar	neters (ug/L)			
Alkalinity (total)	410,000	360,000	360,000	390,000	
Chemical Oxygen Demand	15,000	11,000	6,600	6,900	1
Ethane	3.9	0.83 J	3	2.3	-
Ethylene	3.3	1.3	1.9	1.4	-
Iron, Ferric (total)	427	300	193	100	-
Iron, Ferrous (total)	4,400	800	2,100	2,100	/ <u>*</u>
Iron (total)	4,800	1,100	2,300	2,200	
Manganese (total)	220	420	270	220	6,500 (G,X)
Nitrogen, Nitrate + Nitrite	0.0059 J	180	< 0.0037	<50	-
Hardness as CaC0 ₃	na	410,000	na	490,000	
Sulfate (total)	41,000	53,000	100,000	100,000	-
Sulfide (total)	<610	<1,000	<610	<1,000	-

^{[1]:} Compliance monitoring well

^{[2]:} MDEQ Part 201 RRD Op Memo No. 1, January 23, 2006 and Earth Tech/Weston Solutions 2004 Human Health Enivronmental Indicator

< 1.0 indicates a value below the method detection limit.

na: indicates "not analyzed"

G: GSI criterion depends on the pH or water hardness, or both, of the receiving surface water.

X: The GSI criterion shown in the generic cleanup criteria tables is not protective for surface water that is used as a drinking water source.

Figures

FIGURES

Figure 1 General Site Location Fowlerville, Michigan

Figure 2 Monitoring Well Locations JCI Stanley Tools Facility, Fowlersville, MI

Figure 3 Shallow Groundwater Flow - March 2008 JCI Stanley Tools Facility, Fowlersville, MI

ATTACHMENT 1

PROPOSED AMERICAN COMPOUNDING EXPANSION PLANS

The second secon

ATTACHMENT 2

LABORATORY ANALYTICAL REPORT FOR 1ST SEMI-ANNUAL 2008 GROUNDWATER SAMPLES

ATTACHMENT 2

LABORATORY ANALYTICAL REPORT FOR 1ST SEMI-ANNUAL 2008 GROUNDWATER SAMPLES

March 20, 2008

CTI and Associates, Inc. Attn: Mr. Raulie Casteel 12482 Emerson Drive Brighton, MI 48116

Project: JCI Former Stanley Tool Works

Dear Mr. Raulie Casteel,

Enclosed is a copy of the laboratory report, comprised of the following work order(s), for test samples received by TriMatrix Laboratories:

Work Order	Received	Description
0803066	03/05/2008	Semi-Annual Samples
0803115	03/06/2008	Semi-Annual Samples

This report relates only to the sample(s), as received. Test results are in compliance with the requirements of the National Environmental Laboratory Accreditation Conference (NELAC); any qualifications of results, including sample acceptance requirements, are explained in the Statement of Data Qualifications.

Estimates of analytical uncertainties for the test results contained within this report are available upon request.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Gary L. Wood Project Chemist

Enclosures(s)

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-J2

Lab Sample ID: 0803066-01

Matrix:

Water

Unit:

Dilution Factor:

ug/L 1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 14:35

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed:

03/10/08

By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B

		Analytical		9.575.4
CAS Number	Analyte	Result	RL	MDL_
67-64-1	Acetone	5.0 U	5.0	1.2
71-43-2	Benzene	1.0U	1.0	0.12
108-86-1	Bromobenzene	1.0U	1.0	0.18
74-97-5	Bromochloromethane	1.0U	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0∪	1.0	0.23
74-83- 9	Bromomethane	1.0∪	1.0	0.19
104-51-8	n-Butylbenzene	1.0U	1.0	0.14
135-98-8	sec-Butylbenzene	1.00	1.0	0.12
* 98-06-6	tert-Butylbenzene	1.0U	1.0	0.065
75-15-0	Carbon Disulfide	5.0U	5.0	0.28
56-23-5	Carbon Tetrachloride	1.0₺	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.00	1.0	0.20
67-66-3	Chloroform	1.0∪	1.0	0.061
74-87-3	Chloromethane	1.0 U	1.0	0.060
95-49-8	2-Chlorotoluene	1.00	1.0	0.20
106-43-4	4-Chlorotoluene	1.0U	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
124-48-1	Dibromochloromethane	1.00	1.0	0.14
106-93-4	1,2-Dibromoethane	1.00	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.00	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17
75-34-3	1,1-Dichloroethane	1.0U	1.0	0,076
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.00	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.00	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16

Continued on next page

See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-J2

Lab Sample ID: 0803066-01

Matrix:

Water

Unit:

Dilution Factor: 1

QC Batch:

ug/L

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 14:35

Sampled By:

P. Riley

Received: Prepared: 03/05/08 17:30

By: JDM 03/10/08

Date Analyzed:

By: JDM 03/10/08

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.00	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0∪	1.0	0.16
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.00	5.0	0.42
98-82-8	Isopropylbenzene	1.0บ	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0∪	1.0	0.096
75-09-2	Methylene Chloride	1.0U	1.0	0.051
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10
127-18-4	Tetrachloroethene	1.00	1.0	0.15
108-88-3	Toluene	0.080J	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.00	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.21
79-01-6	Trichloroethene	1.0U	1.0	0.17
75-6 9- 4	Trichlorofluoromethane	1.00	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.00	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.00	1.0	0.12

Continued on next page

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-J2

Lab Sample ID: 0803066-01

Matrix:

Water

Unit:

Dilution Factor:

ug/L 1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 14:35

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed:

03/10/08

By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

	Analytical								
CAS Number	Analyte	Result	RL	MDL					
75-01- 4	Vinyl Chloride	1.0U	1.0	0.17					
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23					
* 95-47-6	Xylene, Ortho	1.0U	1.0	0.13					
Surrogates	% Recovery	Control Limits							
Dibromofluorometh	nane 102	<i>88-115</i>							
1,2-Dichloroethane	<i>-d4</i> 106	81-116							
Toluene-d8	93	87-113							
4-Bromofluorobenz	rene 89	<i>78-116</i>							

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-J2 Lab Sample ID: 0803066-01

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 14:35

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
*Arsenic	11		5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	190		100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.53		0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Соррег	0.81	J	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	Ų	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
*Selenium	1.0	Ų	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	08027 94
*Zinc	5.7	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-J2 Lab Sample ID: 0803066-01

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 14:35

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	11		5.0	0.74	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Barium	180		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DW.J	0802654
Cadmium	1.2		0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
*Chromium	4.8		1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
*Copper	1.3		1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Lead	0.67	J	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	20		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-J2

Lab Sample ID: 0803066-01

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 14:35

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
*Cyanide, Available Cyanide, Total	2 U	2	1	ug/L	1	USEPA OIA-1677	03/13/08 VAS	0802973
	45	5.0	1.9	ug/L	1	USEPA-9014	03/10/08 VAS	0802652

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B2

Lab Sample ID: 0803066-02

Matrix:

Water

Unit:

ug/L

Dilution Factor:

or: 1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 16:10

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed:

03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
	Acotono	5.0 U	5.0	1.2
67-64-1	Acetone Benzene	1.00	1.0	0.12
71-43-2	Bromobenzene	1.0U	1.0	0.18
108-86-1	Bromochloromethane	1.0U	1.0	0.20
74-97-5	Bromodichloromethane	1.0U	1.0	0.19
75-27-4		1.0U	1.0	0.23
75-25-2 74-83-9	Bromomethane	1.0U	1.0	0.19
	n-Butylbenzene	1.0U	1.0	0.14
104-51-8 135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
* 98-06-6	tert-Butylbenzene	1.0U	1.0	0.065
75-15-0	Carbon Disulfide	5.0U	5.0	0.28
75-15-0 56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.0U	1.0	0.060
95-49-8	2-Chlorotoluene	1.0U	1.0	0.20
106-43-4	4-Chlorotoluene	1.0U	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
12 4-48- 1	Dibromochloromethane	1.0U	1.0	0.14
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17
75-34-3	1,1-Dichloroethane	1.00	1.0	0.076
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.15
75-35- 4	1,1-Dichloroethene	1.0U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.0∪	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B2 Lab Sample ID: 0803066-02

Matrix:

Water

Unit:

ug/L

Dilution Factor:

QC Batch:

1

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 16:10

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed: 03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical	53.1	MDL
CAS Number	Analyte	Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.0 U	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.00	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16
100-41-4	Ethylbenzene	1.00	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.0U	5.0	0.42
98-82-8	Isopropylbenzene	1.0U	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096
75-09-2	Methylene Chloride	1.0∪	1.0	0.051
78-93-3	2-Butanone (MEK)	5.00	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0∪	5.0	0.38
91-20-3	Naphthalene	5.0บ	5.0	0.13
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0∪	1.0	0.10
127-18-4	Tetrachloroethene	1.0∪	1.0	0.15
108-88-3	Toluene	0.113	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0 U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.00	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.00	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0∪	1.0	0.21
79-01-6	Trichloroethene	1.00	1.0	0.17
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	0.513	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.00	1.0	0.12

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-82 Lab Sample ID:

Dilution Factor:

0803066-02

Matrix:

Water

Unit:

ug/L 1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 16:10

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

03/10/08

Date Analyzed:

By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	1.0U	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23
* 95-47-6	Xylene, Ortho	1.0U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromeţhane	107	<i>88-115</i>		
1,2-Dichloroethane-d4	109	81-116		
Toluene-d8	94	<i>87-113</i>		
4-Bromofluorobenzene	90	78-116		

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B2

Lab Sample ID: 0803066-02

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 16:10

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	10		5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	110		100	0.52	ug/L	1	USEPA-6020A	03/17/08	CWG	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	5.7		1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	0.63	J	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
*Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	7.3	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B2

Lab Sample ID: 0803066-02

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 16:10

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	14		5.0	0.74	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
arsenic Barium	140		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Chromium	1.9		1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	CMO	0802654
Copper	0.61	J	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	9.6	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B2 Lab Sample ID: 0803066-02

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/04/08 16:10

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Cyanide, Total	5.0 U	5.0	1.9	ug/L	1	USEPA-9014	03/10/08 VAS	0802652

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17

Lab Sample ID: 0803066-03

Matrix:

Water

Unit: Dilution Factor:

ug/L 1

QC Batch:

0803066

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By: Received: P. Riley

Receiveu.

03/05/08 17:30

Prepared:

03/19/08 By: JLB

Date Analyzed:

03/19/08 By: JLB

Analytical Batch: 8031950

Dissolved Gases in Water by RSK-175 Headspace Analysis

CAS Number	Analyte	Analytical Result	RL	MDL
74-84-0	Ethane	0.83J	1.0	0.13
74-85-1	Ethylene	1.3	1.0	0.11

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17

Lab Sample ID: 0803066-03

Matrix:

Water

Unit:

ug/L

Dilution Factor: QC Batch:

1

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By:

P. Riley

Received: Prepared: 03/05/08 17:30

03/10/08

By: JDM

Date Analyzed:

03/10/08

By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B

		Analytical			
CAS Number	Analyte	Result	RL	MDL	
* 67-64-1	Acetone	1.3JB	5.0	1.2	
71-43-2	Benzene	0.183	1.0	0.12	
108-86-1	Bromobenzene	1.0U	1.0	0.18	
74-97-5	Bromochloromethane	1.0U	1.0	0.20	
75-27-4	Bromodichloromethane	1.0U	1.0	0.19	
75-25-2	Bromoform	1.0U	1.0	0.23	
74-83-9	Bromomethane	1.0U	1.0	0.19	
104-51-8	n-Butylbenzene	1.0U	1.0	0.14	
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12	
* 98-06-6	tert-Butylbenzene	1.0 U	1.0	0.065	
75-15-0	Carbon Disulfide	5.0 U	5.0	0.28	
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15	
108-90-7	Chlorobenzene	1.2	1.0	0.12	
75-00-3	Chloroethane	1.0U	1.0	0.20	
67-66-3	Chloroform	1.0∪	1.0	0.061	
74-87-3	Chloromethane	1.0U	1.0	0.060	
95-49-8	2-Chlorotoluene	1.0U	1.0	0.20	
106-43-4	4-Chlorotoluene	1.0U	1.0	0.13	
96-12-8	1,2-Dibromo-3-chloropropane	1.00	1.0	0.29	
124-48-1	Dibromochloromethane	1.00	1.0	0.14	
106-93-4	1,2-Dibromoethane	1.00	1.0	0.22	
74-95-3	Dibromomethane	1.0U	1.0	0.14	
95-50-1	1,2-Dichlorobenzene	0.361	1.0	0.065	
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.12	
106-46-7	1,4-Dichlorobenzene	0.263	1.0	0.13	
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17	
75-34-3	1,1-Dichloroethane	1.4	1.0	0.076	
107-06-2	1,2-Dichloroethane	1.00	1.0	0.15	
75-3 5 -4	1,1-Dichloroethene	1.00	1.0	0.14	

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17

Lab Sample ID: 0803066-03

Matrix:

Water

Unit:

ug/L

Dilution Factor:

1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed:

A--lutical

By: JDM 03/10/08

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical			
CAS Number	Analyte	<u>Result</u>	RL	MDL	
156-59-2	cis-1,2-Dichloroethene	30	1.0	0.17	
156-60-5	trans-1,2-Dichloroethene	13	1.0	0.16	
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.10	
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14	
E04 20 7	2.2-Dichloropropage	1.0U	1.0	0.24	
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17	
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14	
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16	
100-41-4	Ethylbenzene	1.0U	1.0	0.13	
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23	
591-78-6	2-Hexanone	5.0U	5.0	0.42	
98-82-8	Isopropylbenzene	1.00	1.0	0.12	
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057	
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096	
75-09-2	Methylene Chloride	1.0∪	1.0	0.051	
78-93-3	2-Butanone (MEK)	5.00	5.0	0.33	
108-10-1	4-Methyl-2-pentanone (MIBK)	5.00	5.0	0.38	
91-20-3	Naphthalene	5.00	5.0	0.13	
103-65-1	n-Propylbenzene	1.0U	1.0	0.14	
100-42-5	Styrene	1.0U	1.0	0.11	
630-20-6	1,1,1,2-Tetrachloroethane	1.0∪	1.0	0.15	
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10	
127-18-4	Tetrachloroethene	1.0U	1.0	0.15	
108-88-3	Toluene	0.0803	1.0	0.072	
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13	
120-82-1	1,2,4-Trichlorobenzene	1.0U	1.0	0.16	
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11	
79-00-5	1,1,2-Trichloroethane	1.00	1.0	0.21	
79-01-6	Trichloroethene	3.6	1.0	0.17	
75-69-4	Trichlorofluoromethane	1.00	1.0	0.18	
96-18-4	1,2,3-Trichloropropane	1.00	1.0	0.071	

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17 Lab Sample ID:

0803066-03

Matrix:

Water

Unit: Dilution Factor:

ug/L

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed: 03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical			
CAS Number	Analyte	Result	RL	MDL	
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.13	
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.12	
75-01-4	Vinyl Chloride	26	1.0	0.17	
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23	
* 95-47-6	Xylene, Ortho	1.00	1.0	0.13	
Surrogates	% Recovery	Control Limits			
Dibromofluoromethane	108	<i>88-115</i>			

Surrogates	% Recovery	Control Limit
Dibromofluoromethane	108	88-115
1,2-Dichloroethane-d4	112	81-116
Toluene-d8	98	<i>87-113</i>
4-Bromofluorobenzene	89	78-116

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17

Lab Sample ID: 0803066-03

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	5.0	U	5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	81	3	100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1,0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	CWG	0802794
Copper	0.67	J	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	Ų	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	CWG	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel	30		10	0.28	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
*Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
₹inc	5.5	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17 Lab Sample ID: 0803066-03

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	8v_	QC Batch
Arsenic	1.1	J	5.0	0.74	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Barium	84	J	100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DW)	0802654
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	1.0	1	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Iron	1100		10	5.7	ug/L	1	USEPA-6010B	03/18/08	KLV	0802657
Lead	1.0	Ų	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Manganese	420		10	0.43	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Nickel	33		10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
ilver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DW3	0802654
Zinc	18		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-17 Lab Sample ID: 0803066-03

MW-17

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Cyanide, Total	14		5.0	1.9	ug/L	1	USEPA-9014	03/10/08	VAS	0802652
Iron, Ferric	300		10	10	ug/L	1	SM 3500-Fe B 20th	03/19/08	HLB	0802721
Alkalinity, Total	360000		2000	1800	ug/L	1	USEPA-310.1	03/06/08	CAM	0802566
Chemical Oxygen Demand	11000		5000	2200	ug/L	1	USEPA-410.4	03/13/08	CKD	0802859
Chromium, Hexavalent-Dissolved	5.0	U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08	INR	0802594
Chromium, Hexavalent	1.1	J	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08	INR	0802595
*Iron, Ferrous	800		100	35	ug/L	5	SM 3500-Fe B 20th	03/07/08	HLB	0802719
Hardness as CaCO3	410000		2000	1000	ug/L	1	USEPA-130.2	03/11/08	CKD	0802733
Suifate	53000		10000	2300	ug/L	2	USEPA-375.4	03/10/08	GEH	0802685
*Sulfide, Total	1000	U	1000	1000	ug/L	1	USEPA-9034	03/11/08	KNC	0802753
Nitrogen, Nitrate+Nitrite	180		50	7.2	ug/L	1	USEPA-353.2	03/06/08	HLB	0802726

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1

Dilution Factor:

Lab Sample ID: 0803066-04

Matrix:

Water

Unit:

ug/L 1

QC Batch:

0803066

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received: Prepared: 03/05/08 17:30

03/19/08 By: JLB

Date Analyzed:

03/19/08

By: JLB

Analytical Batch: 8031950

Dissolved Gases in Water by RSK-175 Headspace Analysis

		Analytical		
CAS Number	Analyte	Result	RL	MDL
74-84-0	Ethane	2.3	1.0	0.13
74-85-1	Ethylene	1.4	1.0	0.11

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1

Lab Sample ID: 0803066-04

Matrix:

Water

Unit:

ug/L 2

Dilution Factor: QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

By: JDM 03/11/08

Date Analyzed:

By: JDM 03/11/08

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B

		Analytical		n # 100 P
CAS Number	Analyte	Result	RL	MDL
67-64-1	Acetone	10U	10	2.4
71-43-2	Benzene	2.0U	2.0	0.24
108-86-1	Bromobenzene	2.0U	2.0	0.37
74-97-5	Bromochloromethane	2.0U	2.0	0.39
75-27-4	Bromodichloromethane	2.0U	2.0	0.39
75-25-2	Bromoform	2.0U	2.0	0.46
74-83-9	Bromomethane	2.0U	2.0	0.38
104-51-8	n-Butylbenzene	2.00	2.0	0.29
135-98-8	sec-Butylbenzene	2.0U	2.0	0.25
98-06-6	tert-Butylbenzene	2.0∪	2.0	0.13
75-15-0	Carbon Disulfide	10 U	10	0.57
56-23-5	Carbon Tetrachloride	2.0∪	2.0	0.31
108-90-7	Chlorobenzene	2.0∪	2.0	0.24
75-00-3	Chloroethane	2.00	2.0	0.40
67-66-3	Chloroform	2.0U	2.0	0.12
74-87-3	Chloromethane	2.0U	2.0	0.12
95-49-8	2-Chlorotoluene	2.00	2.0	0.40
106-43-4	4-Chlorotoluene	2.0U	2.0	0.25
96-12-8	1,2-Dibromo-3-chloropropane	2.0U	2.0	0.58
124-48-1	Dibromochloromethane	2.0U	2.0	0.28
106-93-4	1,2-Dibromoethane	2.00	2.0	0.44
74-95-3	Dibromomethane	2.0U	2.0	0.29
95-50-1	1,2-Dichlorobenzene	2.0U	2.0	0.13
541-73-1	1,3-Dichlorobenzene	2.0U	2.0	0.24
106-46-7	1,4-Dichlorobenzene	2.0U	2.0	0.27
75-71-8	Dichlorodifluoromethane	2.0U	2.0	0.34
75-34-3	1,1-Dichloroethane	8.8	2.0	0.15
107-06-2	1,2-Dichloroethane	2.0U	2.0	0.31
75-35-4	1,1-Dichloroethene	2.0	2.0	0.28

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1 Lab Sample ID: 0803066-04

Matrix:

Water

Unit:

Dilution Factor:

ug/L 2

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/11/08 By: JDM

Date Analyzed: 03/11/08

By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL_	MDL
156-59-2	cis-1,2-Dichloroethene	300	2.0	0.33
156-60-5	trans-1,2-Dichloroethene	46	2.0	0.32
78-87-5	1,2-Dichloropropane	2.0U	2.0	0.21
142-28-9	1,3-Dichloropropane	2.0U	2.0	0.29
594-20-7	2,2-Dichloropropane	2.0U	2.0	0.47
563-58-6	1,1-Dichloropropene	2.0U	2.0	0.33
10061-01-5	cis-1,3-Dichloropropene	2.0U	2.0	0.29
10061-02-6	trans-1,3-Dichloropropene	2.0U	2.0	0.31
100-41-4	Ethylbenzene	2.0U	2.0	0.26
87-68-3	Hexachlorobutadiene	2.0∪	2.0	0.45
591-78-6	2-Hexanone	10U	10	0.85
98-82-8	Isopropylbenzene	2.0U	2.0	0.25
99-87-6	4-Isopropyltoluene	2.00	2.0	0.11
1634-04-4	Methyl tert-Butyl Ether	2.0∪	2.0	0.19
75-09-2	Methylene Chloride	0.28J	2.0	0.10
78-93-3	2-Butanone (MEK)	10∪	10	0.66
108-10-1	4-Methyl-2-pentanone (MIBK)	100	10	0.76
91-20-3	Naphthalene	10U	10	0.26
103-65-1	n-Propylbenzene	2.0↓	2.0	0.28
100-42-5	Styrene	2.0U	2.0	0.22
630-20-6	1,1,1,2-Tetrachloroethane	2.0U	2.0	0.30
7 9 -34-5	1,1,2,2-Tetrachloroethane	2.0∪	2.0	0.20
127-18-4	Tetrachloroethene	2.0U	2.0	0.30
108-88-3	Toluene	2.00	2.0	0.14
87-61-6	1,2,3-Trichlorobenzene	2.0U	2.0	0.27
120-82-1	1,2,4-Trichlorobenzene	2.00	2.0	0.32
71-55-6	1,1,1-Trichloroethane	2.00	2.0	0.22
79-00-5	1,1,2-Trichloroethane	2.0U	2.0	0.41
79-01-6	Trichloroethene	11	2.0	0.34
75-69-4	Trichlorofluoromethane	2.0U	2.0	0.36
96-18-4	1,2,3-Trichloropropane	2.0U	2.0	0.14

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1

Lab Sample ID: 0803066-04

Matrix:

Water

Unit:

ug/L

2 Dilution Factor:

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

By: JDM 03/11/08

Date Analyzed:

03/11/08 By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
05.63.6	1,2,4-Trimethylbenzene	2.00	2.0	0.26
95-63-6	1,3,5-Trimethylbenzene	2.0U	2.0	0.24
108-67-8 75-01-4	Vinyl Chloride	5 6	2.0	0.35
136777-61-2	Xylene, Meta + Para	4.0U	4.0	0.46
95-47-6	Xylene, Ortho	2.0U	2.0	0.26
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	106	<i>88-115</i>		
1,2-Dichloroethane-d4	104	81-116		
Toluene-d8	95	<i>87-113</i>		
4-Bromofluorobenzene	90	<i>78-116</i>		

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1

Lab Sample ID: 0803066-04

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	4.4	J	5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	110		100	0.52	ug/L	1	USEPA-6020A	03/17/08	CWD	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel	140		10	0.28	ug/L	1	USEPA-6020A	03/17/08	CMG	0802794
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	Ų	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	38		10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1 Lab Sample ID:

0803066-04

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
711631 Å F.C.	3,400,41,4									
Arsenic	6.3		5.0	0.74	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Barium	120		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0,20	u	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
	•	u	1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Chromium	0.61	J	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper		9	10	5.7	ug/L	1	USEPA-6010B	03/18/08	KLV	0802657
Iron	2200			_		-		, ,	CWG	0802654
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08		
Manganese	220		10	0.43	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
•	160		10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Nickel					-	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	Ŧ		,		
ilverاار	0.20	Ų	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	62		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-B1 Lab Sample ID:

0803066-04

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 12:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result		RL_	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Cyanide, Total	5.0	υ	5.0	1.9	ug/L	1	USEPA-9014	03/10/08	VAS	0802652
Iron, Ferric	100		10	10	ug/L	1	SM 3500-Fe B 20th	03/19/08	HLB	0802721
Alkalinity, Total	390000		2000	1800	ug/L	1	USEPA-310.1	03/06/08	CAM	0802566
Chemical Oxygen Demand	6900		5000	2200	ug/L	1	USEPA-410.4	03/13/08	CKD	0802859
Chromium, Hexavalent-Dissolved	5.0	U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08	INR	0802594
Chromium, Hexavalent	5.0	U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08	INR	0802595
*Iron, Ferrous	2100		200	70	ug/L	10	SM 3500-Fe B 20th	03/07/08	HLB	0802719
Hardness as CaCO3	490000		2000	1000	ug/L	1	USEPA-130.2	03/11/08	CKD	0802733
Sulfate	100000		25000	5800	ug/L	5	USEPA-375.4	03/10/08	GEH	0802685
*Sulfide, Total	1000	υ	1000	1000	ug/L	1	USEPA-9034	03/11/08	KNC	0802753
Nitrogen, Nitrate+Nitrite	50	Ų	50	7.2	ug/L	1	USEPA-353.2	03/06/08	HLB	0802726

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-22 Lab Sample ID: 0803066-05

Matrix:

Unit:

Water

Dilution Factor:

ug/L 1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:30

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

03/10/08

By: JDM

Date Analyzed:

Analytical Batch: 8031245

Amobalical

Volatile Organic Compounds by EPA Method 8260B

		Analytical		
CAS Number	Analyte	Result	RL	MDL
* 67-64-1	Acetone	4.638	5.0	1.2
71-43-2	Benzene	0.38J	1.0	0.12
108-86-1	Bromobenzene	1.0U	1.0	0.18
74-97-5	Bromochloromethane	1.0U	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0U	1.0	0.23
74-83-9	Bromomethane	1.0U	1.0	0.19
104-51-8	n-Butylbenzene	1.00	1.0	0.14
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
* 98-06-6	tert-Butylbenzene	1.0U	1.0	0.065
75-15-0	Carbon Disulfide	5.00	5.0	0.28
56-23-5	Carbon Tetrachloride	1.0∪	1.0	0.15
108-90-7	Chlorobenzene	3.5	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.0∪	1.0	0.060
95-49-8	2-Chlorotoluene	1.00	1.0	0.20
106-43-4	4-Chlorotoluene	1.0∪	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0 U	1.0	0.29
124-48-1	Dibromochloromethane	1.0 U	1.0	0.14
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.00	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.00	1.0	0.17
75-34-3	1,1-Dichloroethane	1.00	1.0	0.076
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.00	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16
100 00 0				

^{&#}x27;See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-22 Lab Sample ID: 0803066-05

Matrix:

Water

Unit:

ug/L

Dilution Factor:

1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:30

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed:

By: JDM 03/10/08

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.00	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.00	1.0	0.24
563-58-6	1,1-Dichloropropene	1.00	1,0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.00	5.0	0.42
98-82-8	Isopropylbenzene	1.0U	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096
75-0 9 -2	Methylene Chloride	1.0U	1.0	0.051
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.0∪	1.0	0.14
100-42-5	Styrene	1.00	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.00	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0∪	1.0	0.10
127-18-4	Tetrachloroethene	1.0U	1.0	0.15
108-88-3	Toluene	1.0∪	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.00	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0U	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.00	1.0	0.21
79-01-6	Trichloroethene	1.0U	1.0	0.17
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1,00	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.00	1.0	0.12

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-22 Lab Sample ID:

0803066-05

Matrix:

Water

Unit:

Dilution Factor: 1

QC Batch:

ug/L

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:30

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

By: JDM 03/10/08

Date Analyzed:

By: JDM 03/10/08

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

	Analytical	570 f	MDL
Analyte	Result	376-	11122
Vinvl Chloride	1.0U	1.0	0.17
•	2.0U	2.0	0.23
Xylene, Ortho	1.0U	1.0	0.13
% Recovery	Control Limits		
109	88-115		
112	81-116		
93	<i>87-113</i>		
90	<i>78-116</i>		
	% Recovery 109 112 93	Analyte Result Vinyl Chloride 1.0 U Xylene, Meta + Para 2.0 U Xylene, Ortho 1.0 U **Recovery* Control Limits 109 88-115 112 81-116 93 87-113	Analyte Result RL Vinyl Chloride 1.0U 1.0 Xylene, Meta + Para 2.0U 2.0 Xylene, Ortho 1.0U 1.0 **Recovery** Control Limits** 109 88-115 81-116 93 87-113

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-22 Lab Sample ID: 0803066-05

Lab Sample ID: Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:30

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	64		5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	360		100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium		U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1.0		1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	08027 94
Copper	0.62		1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead			1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20		0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel	14	•	10	0.28	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
*Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20		0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
7inc	4.9		10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-22

Lab Sample ID: 0803066-05 Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:30

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	86		5.0	0.74	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Barium	410		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Chromium	0.32	3	1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	1.2		1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DW3	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
*Nickel	12		10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
?inc	23		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-22 Lab Sample ID:

0803066-05

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 11:30

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Cyanide, Total	2.1	J	5.0	1.9	ug/L	1	USEPA-9014	03/10/08 V	/AS	0802652
Chromium, Hexavalent-Dissol	0.7	J	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08 I	NR	0802594
Chromium, Hexavalent	1.2	J	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08 II	NR	0802595

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-A2

Lab Sample ID:

0803066-06

Matrix:

Water

Unit:

ug/L

1 Dilution Factor:

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/11/08

By: JDM

Date Analyzed:

03/11/08

By: JDM

Analytical Batch: 8031246

A-shdies!

Volatile Organic Compounds by EPA Method 8260B

		Analytical	RL.	MDL
CAS Number	Analyte	Result	FAR.	4 8 20- 900
	Acetone	5.0U	5.0	1.2
67-64-1	Benzene	1.0U	1.0	0.12
71-43-2	Bromobenzene	1.00	1.0	0.18
108-86-1	Bromochloromethane	1.0U	1.0	0.20
74-97-5	Bromodichloromethane	1.00	1.0	0.19
75-27-4	The state of the s	1.0U	1.0	0.23
75-25-2	Bromoform	1.0U	1.0	0.19
74-83-9	Bromomethane	1.0U	1.0	0.14
104-51-8	n-Butylbenzene	1.00	1.0	0.12
135-98-8	sec-Butylbenzene	1.00	1.0	0.065
98-06-6	tert-Butylbenzene	5.0U	5.0	0.28
75-15-0	Carbon Disulfide	1.0U	1.0	0.15
56-23-5	Carbon Tetrachloride	1.00	1.0	0.12
108-90-7	Chlorobenzene	1.0U	1.0	0.20
75-00-3	Chloroethane	1.00	1.0	0.061
67-66-3	Chloroform	1.00	1.0	0.060
74-87-3	Chloromethane	1.00	1.0	0.20
95-4 9- 8	2-Chlorotoluene	1.0U	1.0	0.13
106-43-4	4-Chlorotoluene	1.00	1.0	0.29
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.14
124-48-1	Dibromochloromethane	1.0U	1.0	0.22
106-93-4	1,2-Dibromoethane		1.0	0.14
74-95-3	Dibromomethane	1.00	1.0	0.065
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.12
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.13
106-46-7	1,4-Dichlorobenzene	1.00	1.0	0.17
75-71-8	Dichlorodifluoromethane	1.00	1.0	0.076
75-34-3	1,1-Dichloroethane	1.0U		0.075
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.13
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.17
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16
-				

Client:

CTI and Associates, Inc.

Project: Client Sample ID: MW-A2

JCI Former Stanley Tool Works

Lab Sample ID: 0803066-06

Matrix:

Water

Unit:

Dilution Factor:

1 QC Batch:

ug/L

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/11/08 By: JDM

Date Analyzed:

03/11/08 By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
70.07.5	1.2 (%)-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1.00	1.0	0.10
78-87-5	1,2-Dichloropropane	1.00	1.0	0.14
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.24
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.17
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.14
10061-01-5	cis-1,3-Dichloropropene			0.14
10061-02-6	trans-1,3-Dichloropropene	1.00	1.0	
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.00	5.0	0.42
98-82-8	Isopropylbenzene	1.0U	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0∪	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0∪	1.0	0.096
75-09-2	Methylene Chloride	1.0U	1.0	0.051
78-93-3	2-Butanone (MEK)	5.00	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.00	1.0	0.14
100-42-5	Styrene	1.00	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.00	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0∪	1.0	0.10
127-18-4	Tetrachloroethene	1.0U	1.0	0.15
108-88-3	Toluene	1.0U	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0U	1.0	0.15
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.21
79-01-6	Trichloroethene	1.0U	1.0	0.17
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.12

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-A2

Lab Sample ID: 0803066-06

Matrix:

Water

Unit:

Dilution Factor:

ug/L 1

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

By: JDM 03/11/08

Date Analyzed:

03/11/08

By: JDM Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	1.0U	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.0∪	2.0	0.23
95-47-6	Xylene, Ortho	1.0U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	106	<i>88-115</i>		
1,2-Dichloroethane-d4	109	81-116		
Toluene-d8	95	<i>87-113</i>		
4-Bromofluorobenzene	90	<i>78-116</i>		

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-A2 Lab Sample ID: 0803066-06

Matrix: .

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Arsenic	4.8	J	5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Arsemc Barium	140	•	100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08 l	CWD	0802794
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	1.3	_	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel	4.0	J	10	0.28	ug/L	1	USEPA-6020A	03/17/08	ĽWO	0802794
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	9.7	3	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-A2

Lab Sample ID: **0803066-06**

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	6.7		5.0	0.74	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Barium	150		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	CWD	0802654
Chromium	1.7		1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	3.6		1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Nickel	7.9	3	10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	i	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	17		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-A2 Lab Sample ID:

0803066-06

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:40

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	8v	QC Batch
Cyanide, Total	5.0 U	5.0	1.9	ug/L	1	USEPA-9014	03/10/08 V	AS	0802652
Chromium, Hexavalent-Dissolved	5.0 U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08 IN	I R	0802594
Chromium, Hexavalent	4.7 J	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08 IN	I R	0802595

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-26 Lab Sample ID:

Matrix:

0803066-07

Water

Unit:

ug/L

Dilution Factor: QC Batch:

1 0802831 Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08

By: JDM

Date Analyzed:

03/10/08

By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B

CAS Number	Amelia	Analytical		
CW2 Isminner	Analyte	Result	RL	MDL
67-64-1	Acetone	5.00	5.0	1.2
71-43-2	Benzene	1.0U	1.0	0.12
108-86-1	Bromobenzene	1.0U	1.0	0.18
74-97-5	Bromochloromethane	1.0U	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0U	1.0	0.23
74-83-9	Bromomethane	1.00	1.0	0.19
104-51-8	n-Butylbenzene	1.0U	1.0	0.14
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
* 98-06-6	tert-Butylbenzene	1.0U	1.0	0.065
75-15-0	Carbon Disulfide	5.00	5.0	0.28
56-23-5	Carbon Tetrachloride	1.00	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.0U	1.0	0.060
95-49-8	2-Chiorotoluene	1.0U	1.0	0.20
106-43-4	4-Chlorotoluene	1.0U	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
124-48-1	Dibromochloromethane	1.0U	1.0	0.14
106-93-4	1,2-Dibromoethane	1.00	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.00	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.00	1.0	0.17
75-34-3	1,1-Dichloroethane	0.45]	1.0	0.076
107-06-2	1,2-Dichloroethane	1.00	1.0	0.15
75-35- 4	1,1-Dichloroethene	1.0U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	15	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16

Continued on next page

Page 40 of 101

^{*}See Statement of Data Qualifications

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: MW-26

Lab Sample ID: **0803066-07** Matrix: Water

Unit: ug/L

Dilution Factor: 1

OC Batch: 0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08 By: JDM

Date Analyzed: 03/

03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number		Analytical		
	Analyte	Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.0∪	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1,0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.0U	5.0	0.42
98-82-8	Isopropylbenzene	1.0U	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096
75-09-2	Methylene Chloride	1.00	1.0	0.051
78-93-3	2-Butanone (MEK)	5.00	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.00	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.00	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0∪	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10
127-18-4	Tetrachloroethene	1.00	1.0	0.15
108-88-3	Toluene	1.0U	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0∪	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.00	1.0	0.21
79-01- 6	Trichloroethene	1.00	1.0	0.17
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.12

Client: CTI and Associates, Inc.

JCI Former Stanley Tool Works

Client Sample ID: MW-26

Lab Sample ID: 0803066-07

Matrix: Water Unit: ug/L

Dilution Factor: 1

Project:

QC Batch: 0802831

Work Order: 0803066

Description: Semi-Annual Samples

Sampled: 03/05/08 14:45

Sampled By: P. Riley

Received: 03/05/08 17:30

Prepared: 03/10/08 By: JDM Date Analyzed: 03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01- 4	Vinyl Chloride	7.4	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23
* 95-47-6	Xylene, Ortho	1.0U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	106	<i>88-115</i>		
1,2-Dichloroethane-d4	109	<i>81-116</i>		
Toluene-d8	88	<i>87-113</i>		
4-Bromofluorobenzene	87	78-116		

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-26

· MW-26

0803066-07

Lab Sample ID: Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	2.7	J	5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	110		100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	1.0		1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	Ų	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel	12		10	0.28	ug/L	1	USEPA-6020A	03/17/08	DW3	0802794
*Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	5.0	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-26

Lab Sample ID: 0803066-07

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	₿v	QC Batch
Arsenic	4.6	J	5.0	0.74	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Barium	120		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	0.49	J	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08)MF	0802738
*Nickel	10		10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	12		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-26 Lab Sample ID: 0803066-07

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Cyanide, Total	11	5.0	1.9	ug/L	1	USEPA-9014	03/10/08	VAS	0802652
Chromium, Hexavalent-Dissolved	5.0 U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08	INR	0802594
Chromium, Hexavalent	1.7 J	5.0	0.6	ug/L	1	SM 3500-Cr 8 20th	03/06/08	INR	0802595

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: DUP-1

Lab Sample ID: 0803066-08

Matrix:

Water

Unit: ug/L Dilution Factor: 1

QC Batch: 0802831

Work Order: Description:

0803066

Semi-Annual Samples

Sampled:

03/05/08 15:00

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/11/08 By: JDM

Date Analyzed:

03/11/08 By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 82608

		Analytical		
CAS Number	Analyte	Result	RL	MDL
67-64-1	Acetone	5.0U	5.0	1.2
71-43-2	B enzene	1.0U	1.0	0.12
108-86-1	Bromobenzene	1.0U	1.0	0.18
74-97-5	Bromochloromethane	1.0U	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0U	1.0	0.23
74-83-9	Bromomethane	1.0U	1.0	0.19
104-51-8	n-Butylbenzene	1.00	1.0	0.14
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
98-06-6	tert-Butylbenzene	1.0U	1.0	0.065
75-15-0	Carbon Disulfide	5.0U	5.0	0.28
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.00	1.0	0.061
74-87-3	Chloromethane	1.0U	1.0	0.060
95-49-8	2-Chlorotoluene	1.0U	1.0	0.20
106-43-4	4-Chlorotoluene	1.00	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
124-48-1	Dibromochloromethane	1.0U	1.0	0.14
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.00	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.00	1.0	0.17
75-34-3	1,1-Dichloroethane	0.533	1.0	0.076
107-06-2	1,2-Dichloroethane	1.00	1.0	0.15
75-35-4	1,1-Dichloroethene	1.00	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	16	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.00	1.0	0.16

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: DUP-1

Lab Sample ID: 0803066-08

Matrix: Unit:

Water ug/L

1

Dilution Factor:

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:00

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/11/08 By: JDM

Date Analyzed:

03/11/08

By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0∪	1.0	0.14
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0∪	1.0	0.16
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.0∪	5.0	0.42
98-82-8	Isopropylbenzene	1.0U	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0∪	1.0	0.096
75-09-2	Methylene Chloride	1.0∪	1.0	0.051
78-93-3	2-Butanone (MEK)	5.0 U	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.00	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0∪	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0ប	1.0	0.10
127-18-4	Tetrachloroethene	1.0∪	1.0	0.15
108-88-3	Toluene	1.0U	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.00	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0U	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0∪	1.0	0.21
79-01-6	Trichloroethene	1.0U	1.0	0.17
75-69-4	Trichlorofluoromethane	1,0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0∪	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0∪	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.12

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: DUP-1

Lab Sample ID: 0803066-08

Matrix: Water Unit: ug/L

Dilution Factor:

QC Batch: 0802831 Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:00

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/11/08

Date Analyzed:

By: JDM 03/11/08

By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	8.3	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.00	2.0	0.23
95-47-6	Xylene, Ortho	1.0U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	110	<i>88-115</i>		
1,2-Dichloroethane-d4	112	<i>81-116</i>		
Toluene-d8	95	<i>87-113</i>		
4-Bromofluorobenzene	92	<i>78-116</i>		

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: DUP-1

Lab Sample ID: 0803066-08 Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:00

Sampled By:

P. Riley

Received:

03/05/08 17:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	2.8	J	5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	120		100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel			10	0.28	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
*Selenium	1.0	Ų	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	บ	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	4.5	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: DUP-1

Lab Sample ID: 0803066-08

Matrix: Water

Work Order: 08

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:00

Sampled By:

P. Riley

Received:

03/05/08 17:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	4.5	J	5.0	0.74	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Barium	120		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DW.J	0802654
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	0.52	J	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.051	J	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Nickel	. 13		10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	18		10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: DUP-1

Lab Sample ID: 0803066-08

Matrix:

Water

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:00

Sampled By:

P. Riley

Received:

03/05/08 17:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed B	BV	QC Batch
Cyanide, Total	11		5.0	1.9	ug/L	1	USEPA-9014	03/10/08 VA	s	0802652
Chromium, Hexavalent-Dissolved	5.0	U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/06/08 IN	R	0802594
Chromium, Hexavalent	0.9	J	5.0	0.6	ขg/L	1	SM 3500-Cr B 20th	03/06/08 IN	R	0802595

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: FB-1

Lab Sample ID: 0803066-09

Matrix:

Water

Unit:

ug/L 1

Dilution Factor:

QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared:

03/10/08

By: JDM By: JDM

Date Analyzed: 03/10/08

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B

CAC Alvert	a	Analytical	m	24722
CAS Number	Analyte	<u>Result</u>	RL	MDL
* 67-64-1	Acetone	3.918	5.0	1.2
71-43-2	Benzene	1.00	1.0	0.12
108-86-1	Bromobenzene	1.00	1.0	0.18
74-97-5	Bromochloromethane	1.00	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0U	1.0	0.23
74-83-9	Bromomethane	1.0U	1.0	0.19
104-51-8	n-Butylbenzene	1.00	1.0	0.14
135-98-8	sec-Butylbenzene	1.0 U	1.0	0.12
* 98-06-6	tert-Butylbenzene	1.00	1.0	0.065
75-15-0	Carbon Disulfide	5.0U	5.0	0.28
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.00	1.0	0.060
95-49-8	2-Chlorotoluene	1.0U	1.0	0.20
106-43-4	4-Chlorotoluene	1.0U	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
124-48-1	Dibromochloromethane	1.0U	1.0	0.14
106-93-4	1,2-Dibromoethane	1.0U	1.0	0.22
74-95-3	Dibromomethane	1.00	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.00	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.00	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.076
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.00	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.00	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16

^{*}See Statement of Data Qualifications

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: FB-1

Lab Sample ID: 0803066-09

Matrix:

Water

Unit:

ug/L 1

Dilution Factor: QC Batch:

0802831

Work Order:

0803066

Description:

Semi-Annual Samples

Sampled:

03/05/08 15:15

Sampled By:

P. Riley

Received:

03/05/08 17:30

Prepared: Date Analyzed: 03/10/08 By: JDM

03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

78-87-5 142-28-9	Analyte 1,2-Dichloropropane	Result	RL	MDL
	1,2-Dichloropropane			
142-28-0		1.0U	1.0	0.10
172 20 7	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.24
563-58-6	1,1-Dichloropropene	1.00	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.00	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16
100-41-4	Ethylbenzene	1.00	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.0U	5.0	0.42
98-82-8	Isopropylbenzene	1.00	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096
75-09-2	Methylene Chloride	0.153	1.0	0.051
78-93-3	2-Butanone (MEK)	5.0U	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5. 0 U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.00	1.0	0.14
100-42-5	Styrene	1.00	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10
127-18-4	Tetrachloroethene	1.0U	1.0	0.15
108-88-3	Toluene	1.0U	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0U	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.21
79-01-6	Trichloroethene	1.0U	1.0	0.17
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.12

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: FB-1

Lab Sample ID: 0803066-09

Matrix: Water
Unit: ug/L
Dilution Factor: 1

QC Batch: 0802831

y Tool Works Descript

Description: Semi-Annual Samples

Sampled: 03/05/08 15:15

Sampled By: P. Riley

Work Order:

03/05/08 17:30

0803066

Received: 03, Prepared: 03,

03/10/08 By: JDM

Date Analyzed: 03/10/08 By: JDM

Analytical Batch: 8031245

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	1.0U	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23
* 95-47-6	Xylene, Ortho	1.0U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	100	<i>88-115</i>		
1,2-Dichloroethane-d4	99	<i>81-116</i>		
Toluene-d8	93	<i>87-113</i>		
4-Bromofluorobenzene	90	<i>78-116</i>		

Client: CTI and Associates, Inc.

JCI Former Stanley Tool Works Project:

Client Sample ID: MW-2

Lab Sample ID: 0803115-01

Matrix:

Water

Unit: ug/L Dilution Factor:

50

0802831 QC Batch:

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

Date Analyzed:

03/11/08 By: JDM

By: JDM 03/11/08

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B

		Analytical		
CAS Number	Analyte	Result	RL	MDL
67- 64 -1	Acetone	250 U	250	60
71-43-2	Benzene	50 U	50	5.9
108-86-1	Bromobenzene	50 U	50	9.2
74-97-5	Bromochloromethane	50 U	50	9.8
75-27-4	Bromodichloromethane	50 U	50	9.7
75-25-2	Bromoform	50 U	50	12
74-83-9	Bromomethane	50 U	50	9.6
104-51-8	n-Butylbenzene	50 U	50	7.2
135-98-8	sec-Butylbenzene	50 U	50	6.2
98-06-6	tert-Butylbenzene	50 U	50	3.3
75-15-0	Carbon Disulfide	250 U	250	14
56-23-5	Carbon Tetrachloride	50 U	50	7.6
108-90-7	Chlorobenzene	50 U	50	6.0
75-00-3	Chloroethane	50 U	50	10
67-66-3	Chloroform	50 U	50	3.1
74-87-3	Chloromethane	50 U	50	3.0
95-49-8	2-Chlorotoluene	50 U	50	10
106-43-4	4-Chlorotoluene	50 U	50	6.4
96-12-8	1,2-Dibromo-3-chloropropane	500	50	14
124-48-1	Dibromochloromethane	50 U	50	6.9
106-93-4	1,2-Dibromoethane	50 U	50	11
74-95-3	Dibromomethane	50 U	50	7.2
95-50-1	1,2-Dichlorobenzene	50 U	50	3.3
541-73-1	1,3-Dichlorobenzene	50 U	50	6.0
106-46-7	1,4-Dichlorobenzene	50 U	50	6.6
75-71-8	Dichlorodifluoromethane	50 U	50	8.4
75-34-3	1,1-Dichloroethane	50U	50	3.8
107-06-2	1,2-Dichloroethane	50 U	50	7.6
75-35-4	1,1-Dichloroethene	50 U	50	7.0
156-59-2	cis-1,2-Dichloroethene	600	50	8.3
156-60-5	trans-1,2-Dichloroethene	233	50	7.9

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-2

Matrix:

Lab Sample ID: 0803115-01

Unit:

Water ug/L

Dilution Factor:

50

QC Batch:

0802831

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

03/11/08

By: JDM

Date Analyzed:

03/11/08 By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	50 U	50	5.2
142-28-9	1,3-Dichloropropane	50 U	50	7.2
594-20-7	2,2-Dichloropropane	50 บ	50	12
563-58-6	1,1-Dichloropropene	50 U	50	8.3
10061-01-5	cis-1,3-Dichloropropene	50 U	50	7.2
10061-02-6	trans-1,3-Dichloropropene	50 U	50	7.8
100-41-4	Ethylbenzene	50 U	50	6.6
87-68-3	Hexachlorobutadiene	50 U	50	11
591-78-6	2-Hexanone	250 U	250	21
98-82-8	Isopropylbenzene	50 U	50	6.2
99-87-6	4-Isopropyltoluene	50 U	50	2.9
1634-04-4	Methyl tert-Butyl Ether	50 U	50	4.8
75-09-2	Methylene Chloride	8.53	50	2.5
78-93-3	2-Butanone (MEK)	250 U	250	16
108-10-1	4-Methyl-2-pentanone (MIBK)	250 U	250	19
91-20-3	Naphthalene	250 U	250	6.6
103-65-1	n-Propylbenzene	50 U	50	6.9
100-42-5	Styrene	50 U	50	5.4
630-20-6	1,1,1,2-Tetrachloroethane	50 U	50	7. 4
79-34-5	1,1,2,2-Tetrachloroethane	50 U	50	5.0
127-18-4	Tetrachloroethene	50 U	50	7.4
108-88-3	Toluene	50 U	50	3.6
87-61-6	1,2,3-Trichlorobenzene	50 U	50	6.6
120-82-1	1,2,4-Trichlorobenzene	50 U	50	8.1
71-55-6	1,1,1-Trichloroethane	50 U	50	5.5
79-00-5	1,1,2-Trichloroethane	50 U	50	10
79-01-6	Trichloroethene	3600	50	8.6
75-69-4	Trichlorofluoromethane	50 U	50	9.0
96-18-4	1,2,3-Trichloropropane	50 U	50	3.6
95-63-6	1,2,4-Trimethylbenzene	50 U	50	6.6
108-67-8	1,3,5-Trimethylbenzene	50 U	50	6.0

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-2

Lab Sample ID: 0803115-01

Matrix:

Water

Unit:

ug/L 50

Dilution Factor: QC Batch:

0802831

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 14:45

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

03/11/08 By: JDM

Date Analyzed: 03/11/08

By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	50 U	50	8.7
136777-61-2	Xylene, Meta + Para	100 U	100	12
95-47-6	Xylene, Ortho	50 U	50	6.4
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	2 107	<i>88-115</i>		
1,2-Dichloroethane-d4	112	<i>81-116</i>		
Toluene-d8	. 87	<i>87-113</i>		
4-Bromofluorobenzene	2 88	<i>78-116</i>		

Client: CTI and As

CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: **MW-11**Lab Sample ID: **0803115-02**

Matrix:

Water

Unit:

ug/L

Dilution Factor: 1

QC Batch:

0802831

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 17:00

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

03/11/08 By: JDM

Date Analyzed:

03/11/08

By: JDM

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B

		Analytical		
CAS Number	Analyte	Result	RL	MDL
67-64-1	Acetone	5.0U	5.0	1.2
71-43-2	Benzene	1.00	1.0	0.12
108-86-1	Bromobenzene	1.00	1.0	0.18
74-97-5	Bromochloromethane	1.0∪	1.0	0.20
75-27-4	Bromodichloromethane	1.0∪	1.0	0.19
75-25-2	Bromoform	1.00	1.0	0.23
74-83-9	Bromomethane	1.0∪	1.0	0.19
104-51-8	n-Butylbenzene	1.00	1.0	0.14
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
98-06-6	tert-Butylbenzene	1.0U	1.0	0.065
75-15-0	Carbon Disulfide	5.0U	5.0	0.28
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.00	1.0	0.060
95-49-8	2-Chlorotoluene	1.0U	1.0	0.20
106-43-4	4-Chlorotoluene	1.0U	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.00	1,0	0.29
124-48-1	Dibromochloromethane	1.0∪	1.0	0.14
106-93-4	1,2-Dibromoethane	1.00	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.0∪	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17
75-34-3	1,1-Dichloroethane	0.263	1.0	0.076
107-06-2	1,2-Dichloroethane	1.0∪	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	0.773	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16

Client: CTI and Associates, Inc. Work Order: 0803115

Project: JCI Former Stanley Tool Works Description: Semi-Annual Samples

 Client Sample ID: MW-11
 Sampled: 03/05/08 17:00

 Lab Sample ID: 0803115-02
 Sampled By: P. Riley/E.Hammerly

 Matrix: Water
 Received: 03/06/08 18:30

Unit: ug/L Prepared: 03/11/08 By: JDM Dilution Factor: 1 Date Analyzed: 03/11/08 By: JDM

QC Batch: 0802831 Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Anaiyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0ប	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.00	1.0	0.16
100-41-4	Ethylbenzene	1.00	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.0ប	5.0	0.42
98-82-8	Isopropylbenzene	1.00	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0∪	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0∪	1.0	0.096
75-09-2	Methylene Chloride	1.00	1.0	0.051
78-93-3	2-Butanone (MEK)	5.00	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.00	5.0	0.13
103-65-1	n-Propylbenzene	1.00	1.0	0.14
100-42-5	Styrene	1.0∪	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0∪	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10
127-18-4	Tetrachloroethene	1.0∪	1.0	0.15
108-88-3	Toluene	0.113	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0∪	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0∪	1.0	0.16
71-55-6	1,1,1-Trichloroethane	1.0∪	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.21
79-01-6	Trichloroethene	3.0	1.0	0.17
75-69-4	Trichlorofluoromethane	1.00	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0∪	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.0∪	1.0	0.12
	•			

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: MW-11 Lab Sample ID: 0803115-02

Matrix: Water Unit: ug/L Dilution Factor: 1

QC Batch:

0802831

Work Order: 0803115

Description: Semi-Annual Samples

Sampled: 03/05/08 17:00

Sampled By: Received:

P. Riley/E.Hammerly

Prepared:

03/06/08 18:30

03/11/08 By: JDM Date Analyzed: By: JDM 03/11/08

Analytical Batch: 8031246

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analytical CAS Number Analyte Result RL MDL 0.17 1.00 1.0 75-01-4 Vinyl Chloride 136777-61-2 Xylene, Meta + Para 2.00 2.0 0.23 0.13 1.0U 1.0 95-47-6 Xylene, Ortho Surrogates Control Limits % Recovery 88-115 Dibromofluoromethane 108 113 81-116 1,2-Dichloroethane-d4 87-113 Toluene-d8 90 90 78-116 4-Bromofluorobenzene

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-11

Lab Sample ID: 0803115-02

Matrix:

Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 17:00

Sampled By: Received:

P. Riley/E.Hammerly

03/06/08 18:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	5.0	U	5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	57	J	100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DW3	0802794
Chromium	5.0		1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	4.3		1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	180		10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-11

: MW-11 0803115-02

Lab Sample ID: Matrix:

Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 17:00

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	5.0	U	5.0	0.74	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Barium	65	J	100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.066	J	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Chromium	4.8		1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	4.8		1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.20	υ	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	υ	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
*Zinc	220	8	10	0.84	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-11

Lab Sample ID: 0803115-02 Matrix:

Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/05/08 17:00

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed By	QC Batch
Cyanide, Total	5.0 U	5.0	1.9	ug/L	1	USEPA-9014	03/10/08 VAS	0802652

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: **MW-24**Lab Sample ID: **0803115-03**

Matrix: Water
Unit: ug/L
Dilution Factor: 1

QC Batch: 0802831

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 14:40

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared: Date Analyzed: 03/11/08 By: JDM

03/11/08 By: JDM

Analytical Batch: 8031246

*Volatile Organic Compounds by EPA Method 8260B

CAS Number	Analyte	Analytical Result	RL	MDL
67-64-1	Acetone	5.0 U	5.0	1.2
71-43-2	8enzene	1.0U	1.0	0.12
108-86-1	Bromobenzene	1.0U	1.0	0.18
74-97-5	Bromochloromethane	1.0U	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0U	1.0	0.23
74-83-9	Bromomethane	1.0U	1.0	0.19
104-51-8	n-Butylbenzene	1.0U	1.0	0.14
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
98-06-6	tert-Butylbenzene	1.0 U	1.0	0.065
75-15-0	Carbon Disulfide	5.0 U	5.0	0.28
56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15
108-90-7	Chlorobenzene	4.6	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.0∪	1.0	0.060
95-49-8	2-Chlorotoluene	1.00	1.0	0.20
106-43-4	4-Chlorotoluene	1.00	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
124-48-1	Dibromochloromethane	1.0∪	1.0	0.14
106-93-4	1,2-Dibromoethane	1.0∪	1.0	0.22
74-95-3	Dibromomethane	1.0∪	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.00	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.0∪	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0∪	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17
75-34-3	1,1-Dichloroethane	1.0U	1.0	0.076
107-06-2	1,2-Dichloroethane	1.0U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	1.0U	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	1.0U	1.0	0.16

Continued on next page

Page 64 of 101

^{*}See Statement of Data Qualifications

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: MW-24 Lab Sample ID: 0803115-03

Matrix: Water Unit: ug/L Dilution Factor: 1

QC Batch: 0802831 Work Order: 0803115

Description:

Semi-Annual Samples

Sampled: Sampled By: 03/06/08 14:40

Received:

P. Riley/E.Hammerly

Prepared:

03/06/08 18:30

03/11/08 By: JDM

Date Analyzed:

03/11/08

By: JDM

Analytical Batch: 8031246

*Volatile Organic Compounds by EPA Method 8260B (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
78-87-5	1,2-Dichloropropane	1.00	1.0	0.10
142-28-9	1,3-Dichloropropane	1.0U	1.0	0.14
594-20-7	2,2-Dichloropropane	1.00	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0U	1.0	0.23
591-78-6	2-Hexanone	5.0U	5.0	0.42
98-82-8	Isopropylbenzene	1.00	1.0	0.12
99-87-6	4-Isopropyltoluene	1.00	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096
75-0 9 -2	Methylene Chloride	1.0U	1.0	0.051
78-93-3	2-Butanone (MEK)	5.00	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0U	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10
127-18-4	Tetrachloroethene	1.0U	1.0	0.15
108-88-3	Toluene	1.0U	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0U	1,0	0.16
71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.21
79-01-6	Trichloroethene	0.603	1.0	0.17
75-69-4	Trichlorofluoromethane	1.0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.00	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.00	1.0	0.13
108-67-8	1,3,5-Trimethylbenzene	1.00	1.0	0.12

Continued on next page

Page 65 of 101

^{*}See Statement of Data Qualifications

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: MW-24

Lab Sample ID: 0803115-03

Matrix: Water Unit: ug/L

Dilution Factor: 1

QC Batch: 0802831 Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 14:40

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

Date Analyzed:

03/11/08 By: JDM 03/11/08

By: JDM

Analytical Batch: 8031246

*Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	1.0U	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23
95-47-6	Xylene, Ortho	1.0 U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	114	<i>88-115</i>		
1,2-Dichloroethane-d4	117	81-116		
Toluene-d8	91	<i>87-113</i>		
4-Bromofluorobenzene	91	<i>78-116</i>		

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-24 Lab Sample ID: 0803115-03

Matrix:

Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 14:40

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Dissolved Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Bv	QC Batch
Arsenic	30		5.0	0.74	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Barium	180		100	0.52	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Copper	0.65	J	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/18/08	DSC	0802910
Nickel	2.2	J	10	0.28	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/18/08	DSC	0802794
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794
Zinc	5.7	3	10	0.84	ug/L	1	USEPA-6020A	03/17/08	DWJ	0802794

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-24

Lab Sample ID: 0803115-03

Matrix:

Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 14:40

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Total Metals by EPA 6000/7000 Series Methods

Analyte	Analytical Result		RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	Ву	QC Batch
Arsenic	36		5.0	0.74	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Barium	200		100	0.52	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Cadmium	0.20	U	0.20	0.062	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Chromium	1.0	U	1.0	0.31	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Copper	1.0	Ų	1.0	0.33	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862
Lead	1.0	U	1.0	0.33	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Mercury	0.20	U	0.20	0.046	ug/L	1	USEPA-7470A	03/12/08	JMF	0802738
Nickel	3.9	3	10	0.28	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Selenium	1.0	U	1.0	0.92	ug/L	1	USEPA-6020A	03/13/08	DSC	0802654
Silver	0.20	U	0.20	0.12	ug/L	1	USEPA-6020A	03/12/08	DWJ	0802654
Zinc	6.5	J	10	0.84	ug/L	1	USEPA-6020A	03/17/08	MSM	0802862

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-24

Lab Sample ID: 0803115-03

Matrix: Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 14:40

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL	MDL	Unit	Dilution Factor	Method	Date Analyzed	By	QC Batch
Cyanide, Available	2 U	2	1	ug/L	1	USEPA OIA-1677	03/13/08	VAS	0802973
Cyanide, Total	48	5.0	1.9	ug/L	1	USEPA-9014	03/10/08	VAS	0802652
Chromium, Hexavalent-Dissolved	5.0 U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/07/08	INR	0802594
Chromium, Hexavalent	5.0 U	5.0	0.6	ug/L	1	SM 3500-Cr B 20th	03/07/08	INR	0802595

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-14

Lab Sample ID: 0803115-04

Matrix:

Water

Unit:

ug/L

Dilution Factor:

1

QC Batch:

0802831

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 12:45

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

03/10/08 By: JDM

Date Analyzed: 03/10/08

By: JDM

Analytical Batch: 8031245

*Volatile Organic Compounds by EPA Method 8260B

		Analytical		
CAS Number	Analyte	Result	RL_	MDL
67-64-1	Acetone	5.00	5.0	1.2
* 71-43-2	Benzene	1.0U	1.0	0.12
108-86-1	Bromobenzene	1.0U	1.0	0.18
74-97-5	Bromochloromethane	1.0U	1.0	0.20
75-27-4	Bromodichloromethane	1.0U	1.0	0.19
75-25-2	Bromoform	1.0U	1.0	0.23
74-83-9	Bromomethane	1.0U	1.0	0.19
104-51-8	n-Butylbenzene	1.0U	1.0	0.14
135-98-8	sec-Butylbenzene	1.0U	1.0	0.12
* 98-06-6	tert-Butylbenzene	1.0U	1.0	0.0 6 5
75-15-0	Carbon Disulfide	5.0บ	5.0	0.28
* 56-23-5	Carbon Tetrachloride	1.0U	1.0	0.15
108-90-7	Chlorobenzene	1.0U	1.0	0.12
75-00-3	Chloroethane	1.0U	1.0	0.20
67-66-3	Chloroform	1.0U	1.0	0.061
74-87-3	Chloromethane	1.0U	1.0	0.060
95-49-8	2-Chlorotoluene	1.0U	1.0	0.20
106-43-4	4-Chlorotoluene	1.0∪	1.0	0.13
96-12-8	1,2-Dibromo-3-chloropropane	1.0U	1.0	0.29
124-48-1	Dibromochloromethane	1.00	1.0	0.14
106-93-4	1,2-Dibromoethane	1,0U	1.0	0.22
74-95-3	Dibromomethane	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	1.0U	1.0	0.065
541-73-1	1,3-Dichlorobenzene	1.0U	1.0	0.12
106-46-7	1,4-Dichlorobenzene	1.0U	1.0	0.13
75-71-8	Dichlorodifluoromethane	1.0U	1.0	0.17
75-34-3	1,1-Dichloroethane	2.4	1.0	0.076
107-06-2	1,2-Dichloroethane	1.00	1.0	0.15
75-35 -4	1,1-Dichloroethene	1.0U	1.0	0.14
156-59-2	cis-1,2-Dichloroethene	23	1.0	0.17
156-60-5	trans-1,2-Dichloroethene	2.5	1.0	0.16

Continued on next page

Page 70 of 101

^{*}See Statement of Data Qualifications

Client: CTI and Associates, Inc.

Project: JCI Former Stanley Tool Works

Client Sample ID: MW-14 Lab Sample ID: 0803115-04

Matrix: Water Unit: ug/L Dilution Factor:

1

0802831 QC Batch:

Work Order:

Description:

Semi-Annual Samples

Sampled: Sampled By: 03/06/08 12:45

0803115

Received:

P. Riley/E.Hammerly

Prepared:

03/06/08 18:30 By: JDM

Date Analyzed:

03/10/08

By: JDM

03/10/08 Analytical Batch: 8031245

*Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL_
78-87-5	1,2-Dichloropropane	1.0U	1.0	0.10
142-28-9	1,3-Dichloropropane	1.00	1.0	0.14
594-20-7	2,2-Dichloropropane	1.0U	1.0	0.24
563-58-6	1,1-Dichloropropene	1.0U	1.0	0.17
10061-01-5	cis-1,3-Dichloropropene	1.0U	1.0	0.14
10061-02-6	trans-1,3-Dichloropropene	1.0U	1.0	0.16
100-41-4	Ethylbenzene	1.0U	1.0	0.13
87-68-3	Hexachlorobutadiene	1.0∪	1.0	0.23
591-78-6	2-Hexanone	5.0 U	5.0	0.42
98-82-8	Isopropylbenzene	1.0U	1.0	0.12
99-87-6	4-Isopropyltoluene	1.0U	1.0	0.057
1634-04-4	Methyl tert-Butyl Ether	1.0U	1.0	0.096
75-09-2	Methylene Chloride	1.0U	1.0	0.051
78-93-3	2-Butanone (MEK)	5.0 บ	5.0	0.33
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0U	5.0	0.38
91-20-3	Naphthalene	5.0U	5.0	0.13
103-65-1	n-Propylbenzene	1.0U	1.0	0.14
100-42-5	Styrene	1.0U	1.0	0.11
630-20-6	1,1,1,2-Tetrachloroethane	1.0∪	1.0	0.15
79-34-5	1,1,2,2-Tetrachloroethane	1.0U	1.0	0.10
127-18-4	Tetrachloroethene	1.0 U	1.0	0.15
108-88-3	Toluene	1.0U	1.0	0.072
87-61-6	1,2,3-Trichlorobenzene	1.0U	1.0	0.13
120-82-1	1,2,4-Trichlorobenzene	1.0U	1,0	0.16
* 71-55-6	1,1,1-Trichloroethane	1.0U	1.0	0.11
79-00-5	1,1,2-Trichloroethane	1.0U	1.0	0.21
79-01-6	Trichloroethene	· 1.0U	1.0	0.17
75-69-4	Trichlorofluoromethane	1,0U	1.0	0.18
96-18-4	1,2,3-Trichloropropane	1.0U	1.0	0.071
95-63-6	1,2,4-Trimethylbenzene	1.0U	1.0	0.13
* 108-67-8	1,3,5-Trimethylbenzene	1.0U	1.0	0.12

Continued on next page

Page 71 of 101

^{*}See Statement of Data Qualifications

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-14

Lab Sample ID: 0803115-04

Matrix: Unit:

Water

Dilution Factor:

ug/L 1

QC Batch:

0802831

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 12:45

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Prepared:

By: JDM 03/10/08

Date Analyzed:

03/10/08 By: JDM

Analytical Batch: 8031245

*Volatile Organic Compounds by EPA Method 8260B (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
75-01-4	Vinyl Chloride	4.4	1.0	0.17
136777-61-2	Xylene, Meta + Para	2.0U	2.0	0.23
* 95-47-6	Xylene, Ortho	1.0U	1.0	0.13
Surrogates	% Recovery	Control Limits		
Dibromofluoromethane	114	<i>88-115</i>		
1,2-Dichloroethane-d4	116	81-116		
Toluene-d8	92	<i>87-113</i>		
4-Bromofluorobenzene	85	<i>78-116</i>		

Client:

CTI and Associates, Inc.

Project:

JCI Former Stanley Tool Works

Client Sample ID: MW-14

Lab Sample ID: 0803115-04

Matrix:

Water

Work Order:

0803115

Description:

Semi-Annual Samples

Sampled:

03/06/08 12:45

Sampled By:

P. Riley/E.Hammerly

Received:

03/06/08 18:30

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Analyte	Analytical Result	RL_	MDL	Unit	Dilution Factor	Method	Date Analyzed Bv	QC Batch
Cyanide, Total	5.0 U	5.0	1.9	ug/L	1	USEPA-9014	03/10/08 VAS	0802652

QUALITY CONTROL REPORT

Dissolved Gases in Water by RSK-175 Headspace Analysis

Analyte	Sampłe Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0803066 Direct Injection/	RSK-175								
Method Blank Unit: ug/L						Analyzed: Analytical I	Batch:	03/19/2008 8031950	By: JLB
Ethane			1.0 U					1.0	0.13
Ethylene			1.0 U					1.0	0.11
Laboratory Control Sample Unit: ug/L			41-10-20-00			Analyzed: Analytical	Batch:	03/19/2008 8031950	By: JLB
Ethane		17.7	16.6	94	76-125			1.0	0.13
Ethylene		16.5	15.5	94	79-121			1.0	0.11
Duplicate 0803066-03 MW-17 Unit: ug/L						Analyzed: Analytical	Batch:	03/19/2008 8031950	By: JLB
Ethane	0.830 J		0.870			5	20	1.0	0.13
Ethylene	1.27		1.32			4	20	1.0	0.11

Volatile Organic Compounds by EPA Method 8260B

		707 married 20 married	motoru mana		**************************************				
Sample	Spike		Spike	Control		RPD	nı	4451	
Analyte Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL	

OC	Batch:	0802831	5030B Aqueous	Purge 8	Trap/USEPA-82608
----	--------	---------	---------------	---------	------------------

Method Blank		Analyzed:	03/10/2008	By: JDM
Unit: ug/L		Analytical Batch:	8031245	
Acetone	5.0U		5.0	1.2
Benzene	1.0 U		1.0	0.12
Bromobenzene	1.00		1.0	0.18
Bromochloromethane	1.0U		1.0	0.20
Bromodichloromethane	1.0 U		1.0	0.19
Bromoform	1.0 U		1.0	0.23
Bromomethane	1.0∪		1.0	0.19
n-Butylbenzene	1.0U		1.0	0.14
sec-Butylbenzene	1.0U		1.0	0.12
tert-Butylbenzene	1.0U		1.0	0.065
Carbon Disulfide	5.0U		5.0	0.28
Carbon Tetrachloride	1.0U		1.0	0.15
Chlorobenzene	1.0U		1.0	0.12
Chloroethane	1.0U		1.0	0.20
Chloroform	1.0U		1.0	0.061
hioromethane	1.0U		1.0	0.060
Chlorotoluene	1.00		1.0	0.20
4-Chlorotoluene	1.0U		1.0	0.13
1,2-Dibromo-3-chloropropane	1.0U		1.0	0.29
Dibromochloromethane	1.0U		1.0	0.14
1,2-Dibromoethane	1.0U		1.0	0.22
Dibromomethane	1.0∪		1.0	0.14
1.2-Dichlorobenzene	1.0 ป		1.0	0.065
1,3-Dichlorobenzene	1.0U		1.0	0.12
1,4-Dichlorobenzene	1.00		1.0	0.13
Dichlorodifluoromethane	1.0∪		1.0	0.17
1,1-Dichloroethane	1.0 U		1.0	0.076
1,2-Dichloroethane	1.0 U		1.0	0.15
1,1-Dichloroethene	1.0U		1.0	0.14
cis-1,2-Dichloroethene	1.0U		1.0	0.17
trans-1,2-Dichloroethene	1.00		1.0	0.16
1,2-Dichloropropane	1.00		1.0	0.10
1,3-Dichloropropane	1.0∪		1.0	0.14
2,2-Dichloropropane	1.0U	w	1.0	0.24
1,1-Dichloropropene	1.0U		1.0	0.17
cis-1,3-Dichloropropene	1.0U		1.0	0.14

QUALITY CONTROL REPORT

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits		RPD imits RL	MDL
QC Batch: 0802831 (Continued) 5030B	Aqueous	s Purge 8	3. Trap/USE	PA-8260B				
Method Blank (Continued) Unit: ug/L	***************************************	Misson	·	G. JANOVALS		Analyzed: Analytical Batcl	03/10/2008 n: 8031245	By: JDM
trans-1,3-Dichloropropene			1.0U				1.0	0.16
Ethylbenzene			1.0U				1.0	0.13
Hexachlorobutadiene			1.0U				1.0	0.23
2-Hexanone			5.0 U				5.0	0.42
Isopropylbenzene			1.0U				1.0	0.12
4-Isopropyltoluene			1.0U				. 1.0	0.057
Methyl tert-Butyl Ether			1.00				1.0	0.096
Methylene Chloride			1.0 U				1.0	0.051
2-Butanone (MEK)			5.0U				5.0	0.33
4-Methyl-2-pentanone (MIBK)			5.00				5.0	0.38
Naphthalene			3.023				5.0	0.13
n-Propylbenzene			1.00				1.0	0.14
Styrene			1.00				1.0	0.11
1,1,1,2-Tetrachloroethane			1.0U				1.0	0.15
1,1,2,2-Tetrachloroethane			1.0U				1.0	0.10
etrachloroethene			1.0U				1.0	0.15
oluene			1.0U				1.0	0.072
1,2,3-Trichlorobenzene			1.0U				1.0	0.13
1,2,4-Trichlorobenzene			1.0U				1.0	0.16
1,1,1-Trichloroethane			1.00				1.0	0.11
1,1,2-Trichloroethane			1.0 U				1.0	0.21
Trichloroethene			1.0 U				1.0	0.17
Trichlorofluoromethane			1.0U				1.0	0.18
1,2,3-Trichloropropane			1.00				1.0	0.071
1,2,4-Trimethylbenzene			1.0U				1.0	0.13
1,3,5-Trimethylbenzene			1.0 U				1.0	0.12
Vinyl Chloride			1.0U				1.0	0.17
Xylene, Meta + Para			2.00				2.0	0.23
Xylene, Ortho			1.00				1.0	0.13
Surrogates								
Dibromofluoromethane				106	88-115			
1,2-Dichloroethane-d4				103	81-116			
Toluene-d8				92	87-113			
4-Bromofluorobenzene				88	78-116			
Method Blank		MONAT	10000		14440	Analyzed:	03/11/2008	By: JDM
Unit: ug/L	~-					Analytical Bate	th: 8031246	
Acetone			5.15				5.0	1.2

QUALITY CONTROL REPORT

Volatile Organic Compounds by EPA Method 8260B (Continued)

1000 - 100 -	And the Comments of the Commen	A CONTRACTOR OF THE PARTY OF TH		7 Miles			,	the second secon	W - 0 W - 1 - 1
	Sample	Spike		Spike	Control		RPD		
Analyte	Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL
6									

QC Batch: 0802831 (Co	ontinued) 5030B Aqueous	Purge & Trap/USEPA-8260B
-----------------------	-------------------------	--------------------------

Method Blank (Continued) Unit: ug/L		Analyzed: Analytical Batch:	03/11/2008 8031246	By: JDM
Benzene	1.0U		1.0	0.12
Bromobenzene	1.0U		1.0	0.12
Bromochloromethane	1.00		1.0	0.10
Bromodichloromethane	1.0U		1.0	0.19
Bromoform	1.00		1.0	0.23
Bromomethane	1.0U		1.0	0.19
n-Butylbenzene	1.0U		1.0	0.14
sec-Butylbenzene	1.0U		1.0	0.12
tert-Butylbenzene	1.0U		1.0	0.065
Carbon Disulfide	5.0U		5.0	0.28
Carbon Tetrachloride	1.0U		1.0	0.15
Chlorobenzene	1.0U		1.0	0.12
Chloroethane	1.0U		1.0	0.20
Chloroform	1.0U		1.0	0.061
Chloromethane	1.0U		1.0	0.060
Chlorotoluene	1.0U		1.0	0.20
₁ -Chlorotoluene	1.00		1.0	0.13
1,2-Dibromo-3-chloropropane	1.0∪		1.0	0.29
Dibromochloromethane	1.0U		1.0	0.14
1,2-Dibromoethane	1.00		1.0	0.22
Dibromomethane	1.0U		1.0	0.14
1,2-Dichlorobenzene	1.0∪		1.0	0.065
1,3-Dichlorobenzene	1.00		1.0	0.12
1,4-Dichlorobenzene	1.0U		1.0	0.13
Dichlorodifluoromethane	1.0U		1.0	0.17
1,1-Dichloroethane	1.00		1.0	0.076
1,2-Dichloroethane	1.0∪		1.0	0.15
1,1-Dichloroethene	1.0 U		1.0	0.14
cis-1,2-Dichloroethene	1.0U		1.0	0.17
trans-1,2-Dichloroethene	1,0U		1.0	0.16
1,2-Dichloropropane	1.0U		1.0	0.10
1,3-Dichloropropane	1.0ប		1.0	0.14
2,2-Dichloropropane	1.0U		1.0	0.24
1,1-Dichloropropene	1.0U	1	1.0	0.17
cis-1,3-Dichloropropene	1.0∪		1.0	0.14
trans-1,3-Dichloropropene	1.00		1.0	0.16

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec,	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0802831 (Continued)	5030B Aqueou	s Purge 8	& Trap/USE	PA-8260B	10-50-00 · · · · · · · · · · · · · · · · · ·	Managay		HOSC	27)
Method Blank (Continued) Jnit: ug/L						Analyzed: Analytical Bat	ch:	03/11/2008 8031246	By: JDM
Ethylbenzene			1.0 U					1.0	0.13
Hexachlorobutadiene			1.0U					1.0	0.23
2-Hexanone			5.0 U					5.0	0.42
(sopropylbenzene			1.0 U					1.0	0.12
1-Isopropyltoluene			1.0U					1.0	0.057
Methyl tert-Butyl Ether			1.0 U					1.0	0.096
Methylene Chloride			0.0900 3					1.0	0.051
2-Butanone (MEK)			5.0 U					5.0	0.33
4-Methyl-2-pentanone (MIBK)			5.0 U					5.0	0.38
Naphthalene			5.0 U					5.0	0.13
n-Propylbenzene			1.0U					1.0	0.14
Styrene			1.0U					1.0	0.11
1,1,1,2-Tetrachloroethane			1.0U					1.0	0.15
1,1,2,2-Tetrachloroethane			1.00					1.0	0.10
Tetrachloroethene			1.0U					1.0	0.15
luene	21		1.0U					1.0	0.072
.,2,3-Trichlorobenzene			1.0U					1.0	0.13
1,2,4-Trichlorobenzene			1.0U					1.0	0.16
1,1,1-Trichloroethane			1.00					1.0	0.11
1,1,2-Trichloroethane			1.0U					1.0	0.21
Trichloroethene			1.00					1.0	0.17
Trichlorofluoromethane			1.0U					1.0	0.18
1,2,3-Trichloropropane			1.0 U					1.0	0.071
1,2,4-Trimethylbenzene			1.0U					1.0	0.13
1,3,5-Trimethylbenzene			1.0U					1.0	0.12
Vinyl Chloride			1.00					1.0	0.17
Xylene, Meta + Para			2.0 U					2.0	0.23
Xylene, Ortho			1.0U					1.0	0.13
Surrogates									
Dibromofluoromethane				105	<i>88-115</i>				
1,2-Dichloroethane-d4				101	81-116				
Toluene-d8				98	87-113				
4-Bromofluorobenzene				90	78-116				
Laboratory Control Sample Unit: ug/L	-		A7289 1000 Nat			Analyzed: Analytical Bat	ch:	03/10/2008 8031245	By: JDM
*Acetone		40.0	37.68	94	52-134			5.0	1.2

Continued on next page

See Statement of Data Qualifications

Page 78 of 101

Volatile Organic Compounds by EPA Method 8260B (Continued)

<u> </u>	2712 Value 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	COLUMN TO THE PARTY OF THE PART	and the second second	100 to be and non-	7610W(1			Titler Annual gray (1997) Annual Company		
	Sample	Spike		Spike	Control		RPD			
Analyte	Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL	

OC Ratch	0802831	(Continued)	5030B	Aqueous Purge	& Tran/	HISEPA-8260R
	UCUZOJI		20200	Muueous ruive	ou Hau/	USEPATOZOUD

Laboratory Control Sample (Continued) Unit: ug/L		**************************************			Analyzed: Analytical Batch;	03/10/2008 8031245	By: JDM
Benzene	40.0	42.1	105	86-122		1.0	0.12
Bromobenzene	40.0	41.1	103	85-118		1.0	0.18
Bromochloromethane	40.0	42.6	106	79-122		1.0	0.20
Bromodichloromethane	40.0	45.8	115	81-126		1.0	0.19
Bromoform	40.0	38.2	96	55-126		1.0	0.23
Bromomethane	40.0	43.6	109	56-140		1.0	0.19
n-Butylbenzene	40.0	47.4	119	79-122		1.0	0.14
sec-Butylbenzene	40.0	46.1	115	85-118		1.0	0.12
tert-Butylbenzene	40.0	46.9	117	85-115		1.0	0.065
Carbon Disulfide	40.0	46.9	117	74-133		5.0	0.28
Carbon Tetrachloride	40.0	49.3	123	80-126		1.0	0.15
Chlorobenzene	40.0	42.4	106	88-114		1.0	0.12
Chloroethane	40.0	42.1	105	71-136		1.0	0.20
Chloroform	40.0	43.9	110	86-120		1.0	0.061
Chloromethane	40.0	40.9	102	68-130		1.0	0.060
Chlorotoluene	40.0	43.5	109	91-116		1.0	0.20
+-Chlorotoluene	40.0	43.4	109	89-115		1.0	0.13
1,2-Dibromo-3-chloropropane	40.0	34.7	87	61-123		1.0	0.29
Dibromochloromethane	40.0	39.8	99	73-114		1.0	0.14
1,2-Dibromoethane	40.0	41.3	103	81-118		1.0	0.22
Dibromomethane	40.0	42.3	106	83-120		1.0	0.14
1,2-Dichlorobenzene	40.0	43.7	109	87-119		1.0	0.065
1,3-Dichlorobenzene	40.0	43.2	108	88-116		1.0	0.12
1,4-Dichlorobenzene	40.0	42.3	106	86-117		1.0	0.13
Dichlorodifluoromethane	40.0	44.5	111	67-133		1.0	0.17
1,1-Dichloroethane	40.0	43.6	109	80-122		1.0	0.076
1,2-Dichloroethane	40.0	42.6	107	78-121		1.0	0.15
1,1-Dichloroethene	40.0	43.8	110	81-125		1.0	0.14
cis-1,2-Dichloroethene	40.0	44.9	112	8 4 -121		1.0	0.17
trans-1,2-Dichloroethene	40.0	43.8	109	85-121		1.0	0.16
1,2-Dichloropropane	40.0	42.7	107	74-125		1.0	0.10
1,3-Dichloropropane	40.0	40.4	101	82-117		1.0	0.14
2,2-Dichloropropane	40.0	49.3	123	48-136		1.0	0.24
1,1-Dichloropropene	40.0	45.6	114	83-123		1.0	0.17
cis-1,3-Dichloropropene	40.0	39.9	100	78-119		1.0	0.14
trans-1,3-Dichloropropene	40.0	38.1	95	70-125		1.0	0.16

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD RPD Limits	RL	MDL
QC Batch: 0802831 (Continued) 503	0B Aqueous	Purge 8	t Trap/USE	PA-8260B	I			
Laboratory Control Sample (Continu Unit: ug/L	ied)	*8974	<u> </u>			Analyzed: Analytical Batch:	03/10/2008 8031245	By: JDM
Ethylbenzene		40.0	45.1	113	86-116		1.0	0.13
Hexachlorobutadiene		40.0	45.0	112	77-117		1.0	0.23
2-Hexanone		40.0	32.3	81	53-137		5.0	0.42
Isopropylbenzene		40.0	47.1	118	90-118		1.0	0.12
4-Isopropyltoluene		40.0	43.5	109	84-119		1.0	0.057
Methyl tert-Butyl Ether		40.0	40.7	102	82-117		1.0	0.096
Methylene Chloride		40.0	43.4	108	74-135		1.0	0.051
2-Butanone (MEK)		40.0	41.8	104	60-134		5.0	0.33
4-Methyl-2-pentanone (MIBK)		40.0	33.5	84	53-142		5.0	0.38
Naphthalene		40.0	36.4 45.7	91	69-118		5.0	0.13
n-Propylbenzene		40.0		114	88-119		1.0	0.14
Styrene		40.0	44.0	110	81-115		1.0	0.11
1,1,1,2-Tetrachloroethane		40.0	42.8	107	85-120		1.0	0.15
1,1,2,2-Tetrachloroethane		40.0	36.9	92	81-127		1.0	0.10
Tetrachloroethene		40.0	43.6	109	85-115		1.0	0.15
oluene		40.0	43.8 44.5	110	87-123 74-125		1.0	0.072 0.13
1,2,3-Trichlorobenzene		40.0		111			1.0	
1,2,4-Trichlorobenzene		40.0	40.5	102	75-127		1.0	0.16
1,1,1-Trichloroethane		40.0	46.3	116	81-123		1.0	0.11
1,1,2-Trichloroethane		40.0	40.8	102 110	86-123		1.0	0.21
Trichloroethene		40.0	44.1		80-122		1.0	0.17
Trichlorofluoromethane		40.0	45.6	114	78-130		1.0	0.18
1,2,3-Trichloropropane		40.0	38.5	96	72-125		1.0	0.071
1,2,4-Trimethylbenzene		40.0	43.0	107	86-116		1.0	0.13
1,3,5-Trimethylbenzene		40.0	45.8	114 105	85-117		1.0	0.12
Vinyl Chloride		40.0	41.9 93.9	105	73-130		1.0	0.17
Xylene, Meta + Para		80.0		117 118	86-118 87-112		2.0	0.23
Xylene, Ortho		40.0	47.3	110	87-112		1.0	0.13
Surrogates								
Dibromofluoromethane				105	88-115			
1,2-Dichloroethane-d4				99	81-116			
Toluene-d8				102	<i>87-113</i>			
4-Bromofluorobenzene				100	<i>78-116</i>			
Laboratory Control Sample Unit: ug/L				10000-0		Analyzed: Analytical Batch:	03/11/2008 8031246	By: JDM
*Acetone		40.0	42.9B	107	52-134		5.0	1.2

Continued on next page

See Statement of Data Qualifications

Page 80 of 101

Volatile Organic Compounds by EPA Method 8260B (Continued)

		Section Commission	- 1570'mm _{e2} , 7-10-	······································	The Committee of the Co	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***************************************	· · · · · · · · · · · · · · · · · · ·	1.100	_
	Sample	Spike		Spike	Control		RPD			
alyte	Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL	

QC Batch: 0802831 (Continued) 5030B Aqueous Purge & Trap/USEPA-8260B

Laboratory Control Sample (Continued) Unit: ug/L					Analyzed: Analytical Batch:	03/11/2008 8031246	Ву: JDM
Benzene	40.0	38.9	97	86-122		1.0	0.12
Bromobenzene	40.0	38.7	97	85-118		1.0	0.18
Bromochloromethane	40.0	39.8	100	79-122		1.0	0.20
Bromodichloromethane	40.0	42.0	105	81-126		1.0	0.19
Bromoform	40.0	35.4	89	55-126		1.0	0.23
Bromomethane	40.0	41.2	103	56-140		1.0	0.19
n-Butylbenzene	40.0	42.9	107	79-122		1.0	0.14
sec-Butylbenzene	40.0	42.2	106	85-118		1.0	0.12
tert-Butylbenzene	40.0	43.3	108	85-115		1.0	0.065
Carbon Disulfide	40.0	46.3	116	74-133		5.0	0.28
Carbon Tetrachloride	40.0	40.6	101	80-126		1.0	0.15
Chlorobenzene	40.0	38.4	96	88-114		1.0	0.12
Chloroethane	40.0	39.5	99	71-136		1.0	0.20
Chloroform	40.0	38.9	97	86-120		1.0	0.061
Chloromethane	40.0	39.8	100	68-130		1.0	0.060
Chlorotoluene	40.0	41.1	103	91-116		1.0	0.20
4-Chlorotoluene	40.0	40.6	101	89-115		1.0	0.13
1,2-Dibromo-3-chloropropane	40.0	36.1	90	61-123		1.0	0.29
Dibromochloromethane	40.0	36.3	91	73-114		1.0	0.14
1,2-Dibromoethane	40.0	41.0	102	81-118		1.0	0.22
Dibromomethane	40.0	41.9	105	83-120		1.0	0.14
1,2-Dichlorobenzene	40.0	40.6	102	87-119		1.0	0.065
1,3-Dichlorobenzene	40.0	40.2	100	88-116		1.0	0.12
1,4-Dichlorobenzene	40.0	39.2	98	86-117		1.0	0.13
Dichlorodifluoromethane	40.0	39.9	100	67-133		1.0	0.17
1,1-Dichloroethane	40.0	39.8	100	80-122		1.0	0.07 6
1,2-Dichloroethane	40.0	40.0	100	78-121		1.0	0.15
1,1-Dichloroethene	40.0	40.9	102	81-125		1.0	0.14
cis-1,2-Dichloroethene	40.0	41.0	103	84-121		1.0	0.17
trans-1,2-Dichloroethene	40.0	40.6	101	85-121		1.0	0.16
1,2-Dichloropropane	40.0	41.5	104	74-125		1.0	0.10
1,3-Dichloropropane	40.0	39.4	98	82-117		1.0	0.14
2,2-Dichloropropane	40.0	42.0	105	48-136		1.0	0.24
1,1-Dichloropropene	40.0	41.8	105	83-123		1.0	0.17
cis-1,3-Dichloropropene	40.0	38.7	97	78-119		1.0	0.14
trans-1,3-Dichloropropene	40.0	37.6	94	70-125		1.0	0.16

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0802831 (Continued) 5030	B Aqueou	s Purge 8	և Trap/USE	PA-8260E	3	COMPOSED COMPOSED	· · · · · · · · · · · · · · · · · · ·	(A ₁ ,	
aboratory Control Sample (Continue Jnit: ug/L	ed)					Analyzed: Analytical Bat	ch:	03/11/2008 8031246	By: JDM
Ethylbenzene		40.0	40.2	100	86-116			1.0	0.13
Hexachlorobutadiene		40.0	40.7	102	77-117			1.0	0.23
2-Hexanone		40.0	39.4	98	53-137			5.0	0.42
Isopropylbenzene		40.0	43.8	110	90-118			1.0	0.12
1-Isopropyltoluene		40.0	39.9	100	84-119			1.0	0.057
Methyl tert-Butyl Ether		40.0	42.4	106	82-117			1.0	0.096
Methylene Chloride		40.0	39.8	99	74-135			1.0	0.051
2-Butanone (MEK)		40.0	40.5	101	60-134			5.0	0.33
4-Methyl-2-pentanone (MIBK)		40.0	40.8	102	53-142			5.0	0.38
Naphthalene		40.0	43.7	109	69-118			5.0	0.13
n-Propylbenzene		40.0	41.6	104	88-119			1.0	0.14
Styrene		40.0	39.4	98	81-115			1.0	0.11
1,1,1,2-Tetrachloroethane		40.0	39.0	97	85-120			1.0	0.15
1,1,2,2-Tetrachloroethane		40.0	38.6	96	81-127			1.0	0.10
[etrachloroethene		40.0	39.6	99	85-115			1.0	0.15
bluene		40.0	41.3	103	87-123			1.0	0.072
1,2,3-Trichlorobenzene		40.0	45.5	114	74-125			1.0	0.13
1,2,4-Trichlorobenzene		40.0	39.8	100	75-127			1.0	0.16
1,1,1-Trichloroethane		40.0	39.7	99	81-123			1.0	0.11
1,1,2-Trichloroethane		40.0	41.2	103	86-123			1.0	0.21
Trichloroethene		40.0	42.2	105	80-122			1.0	0.17
Trichlorofluoromethane		40.0	38.6	96	78-130			1.0	0.18
1,2,3-Trichloropropane		40.0	39.8	99	72-125			1.0	0.071
1,2,4-Trimethylbenzene		40.0	39.5	99	86-116			1.0	0.13
1,3,5-Trimethylbenzene		40.0	42.6	106	85-117			1.0	0.12
Vinyl Chloride		40.0	40.3	101	73-130			1.0	0.17
Xylene, Meta + Para		80.0	84.3	105	86-118			2.0	0.23
Xylene, Ortho		40.0	42.3	106	87-112			1.0	0.13
Surrogates									
Dibromofluoromethane				100	<i>88-115</i>				
1,2-Dichloroethane-d4				94	81-116				
Toluene-d8				103	<i>87-113</i>				
4-Bromofluorobenzene				100	78-116				
Matrix Spike 0803115-04 MW-14 Unit: ug/L	-					Analyzed: Analytical Bat	ch:	03/10/2008 8031245	Ву: JDM
Acetone	5.0 U	40.0	5.0U		54-146			5.0	1.2

Volatile Organic Compounds by EPA Method 8260B (Continued)

Sample	Spike		Spike	Control		RPD		
Analyte Conc.	Qty.	Result	% Rec.	Limits	RPD	Limits	RL	MDL
and the second s		- NO. 100 -		**************************************				725 Visit

Matrix Spike (Continued) 0803 Unit: ug/L	8 115-04 MW-14	-04 MW-14					03/10/2008 8031245	By: JDM	
Benzene	1.0 U	40.0	44,4	111	84-127		1.0	0.12	
Bromobenzene	1.0 U	40.0	38.4	96	85-117		1.0	0.18	
Bromochloromethane	1.0 U	40.0	46.6	116	80-123		1.0	0.20	
Bromodichloromethane	1.0 U	40.0	48.4	121	77-130		1.0	0.19	
Bromoform	1.0 U	40.0	39.0	97	52-123		1.0	0.23	
Bromomethane	1.0 U	40.0	36.2	90	52-127		1.0	0.19	
n-Butylbenzene	1.0 U	40.0	41.8	105	75-121		1.0	0.14	
sec-Butylbenzene	1.0 U	40.0	42.8	107	84-118		1.0	0.12	
tert-Butylbenzene	1.0 U	40.0	45.0	113	86-116		1.0	0.065	
Carbon Disulfide	5.0 U	40.0	5.0 U		63-160		5.0	0.28	
Carbon Tetrachloride	1.0 U	40.0	54.2	135	83-126		1.0	0.15	
Chlorobenzene	1.0 U	40.0	43.8	110	89-115		1.0	0.12	
Chloroethane	1.0 U	40.0	43.7	109	77-141		1.0	0.20	
Chloroform	1.0 U	40.0	48.5	121	87-123		1.0	0.061	
Chloromethane	1.0 U	40.0	44.3	111	66-132		1.0	0.060	
Chlorotoluene	1.0 U	40.0	42.3	106	91-117		1.0	0.20	
4-Chlorotoluene	1.0 U	40.0	41.2	103	86-116		1.0	0.13	
1,2-Dibromo-3-chloropropane	1.0 U	40.0	31.3	78	56-121		1.0	0.29	
Dibromochloromethane	1.0 U	40.0	40.0	100	74-110		1.0	0.14	
1,2-Dibromoethane	1.0 U	40.0	41.8	105	80-117		1.0	0.22	
Dibromomethane	1.0 U	40.0	43.6	109	79-124		1.0	0.14	
1,2-Dichlorobenzene	1.0 U	40.0	42.3	106	89-115		1.0	0.065	
1,3-Dichlorobenzene	1.0 U	40.0	41.4	104	89-114		1.0	0.12	
1,4-Dichlorobenzene	1.0 U	40.0	41.1	103	87-114		1.0	0.13	
Dichlorodifluoromethane	1.0 U	40.0	46.7	117	62-126		1.0	0.17	
1,1-Dichloroethane	2.36	40.0	48.8	116	82-125		1.0	0.076	
1,2-Dichloroethane	1.0 U	40.0	48.1	120	78-120		1.0	0.15	
1,1-Dichloroethene	1.0 U	40.0	47.1	118	85-130		1.0	0.14	
cis-1,2-Dichloroethene	23.2	40.0	68.0	112	84-127		1.0	0.17	
trans-1,2-Dichloroethene	2.50	40.0	48.7	116	87-125		1.0	0.16	
1,2-Dichloropropane	1.0 U	40.0	42.2	105	75-125		1.0	0.10	
1,3-Dichloropropane	1.0 U	40.0	40.7	102	76-119		1.0	0.14	
2,2-Dichloropropane	1.0 U	40.0	39.8	100	41-120		1.0	0.24	
1,1-Dichloropropene	1.0 U	40.0	48.0	120	83-124		1.0	0.17	
cis-1,3-Dichloropropene	1.0 U	40.0	35.2	88	68-122		1.0	0.14	
trans-1,3-Dichloropropene	1.0 U	40.0	36.0	90	66-121		1.0	0.16	

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0802831 (Continued) 5	030B Aqueou	s Purge 8	k Trap/USE	PA-8260B		angland	Wiffigure .	122000	
Matrix Spike (Continued) 080311 Unit: ug/L	5-04 MW-14					Analyzed: Analytical 8	atch:	03/10/2008 8031245	By: JDM
Ethylbenzene	1.0 U	40.0	45.4	114	87-118			1.0	0.13
Hexachlorobutadiene	1.0 U	40.0	42.0	105	73-117			1.0	0.23
2-Hexanone	5.0 U	40.0	5.0U		46-149			5.0	0.42
Isopropylbenzene	1.0 U	40.0	44.4	111	89-121			1.0	0.12
4-Isopropyltoluene	1.0 U	40.0	39.3	98	83-11 6			1.0	0.057
Methyl tert-Butyl Ether	1.0 U	40.0	40.5	101	83-113			1.0	0.096
Methylene Chioride	1.0 U	40.0	46.9	117	87-119			1.0	0.051
2-Butanone (MEK)	5.0 ∪	40.0	5.19	13	62-140			5.0	0.33
4-Methyl-2-pentanone (MIBK)	5.0 U	40.0	5.0 U		54-152			5.0	0.38
Naphthalene	5.0 ∪	40.0	33.8	84	61-126			5.0	0.13
n-Propylbenzene	1.0 U	40.0	42.0	105	89-119			1.0	0.14
Styrene	1.0 U	40.0	33.3	83	79-114			1.0	0.11
1,1,1,2-Tetrachloroethane	1.0 U	40.0	45,4	113	85-120			1.0	0.15
1,1,2,2-Tetrachloroethane	1.0 U	40.0	34.8	87	82-126			1.0	0.10
zetrachloroethene	1.0 U	40.0	45.1	113	83-117			1.0	0.15
bluene	1.0 U	40.0	43.5	109	88-125			1.0	0.072
1,2,3-Trichlorobenzene	1.0 U	40.0	42.2	106	71-126			1.0	0.13
1,2,4-Trichlorobenzene	1.0 U	40.0	37.2	93	70-125			1.0	0.16
1,1,1-Trichloroethane	1.0 U	40.0	52.6	131	82-126			1.0	0.11
1,1,2-Trichloroethane	1.0 U	40.0	40.8	102	84-124			1.0	0,21
Trichloroethene	1.0 U	40.0	46.1	115	81-124			1.0	0.17
Trichlorofluoromethane	1.0 U	40.0	50.0	125	79-135			1.0	0.18
1,2,3-Trichloropropane	1.0 U	40.0	37.7	94	70-120			1.0	0.071
1,2,4-Trimethylbenzene	1.0 U	40.0	34.5	86	86-115			1.0	0.13
1,3,5-Trimethylbenzene	1.0 U	40.0	36.1	90	86-114			1.0	0.12
Vinyl Chloride	4,40	40.0	46.1	104	71-136			1.0	0.17
Xylene, Meta + Para	2.0 U	80.0	89.9	112	85-119			2.0	0.23
Xylene, Ortho	1.0 U	40.0	45.1	113	88-112			1.0	0.13
Surrogates									
Dibromofluoromethane				114	<i>88-115</i>				
1,2-Dichloroethane-d4				10 9	81-116				
Toluene-d8				99	87-113				
4-Bromofluorobenzene				104	<i>78-116</i>				
Matrix Spike Duplicate 0803115- Unit: ug/L	04 MW-14		20110			Analyzed; Analytical B	atch:	03/10/2008 8031245	By: JDM
Acetone	5.0 U	40.0	5.0U		54-146		27	5.0	1.2

Volatile Organic Compounds by EPA Method 8260B (Continued)

		~	······				Za				
ļ	A note to	Sample Conc.	Spike	Danult	Spike % Rec.	Control Limits	RPD	RPD	Di	MDL	
	Analyte	Conc.	Qty.	Result	70 KEC.	LIMILS	KPD	Limits	KL	MUL	

QC Batch: 0802831	. (Continued)	5030B Aqueous	Purge &	Trap/USEPA-8260B
-------------------	---------------	---------------	---------	------------------

Matrix Spike Duplicate (Contin Unit: ug/L	ued) 0803115-	- 04 MW-1	4			Analyzed: Analytical E	Ratch:	03/10/2008 8031245	By: JDM
Benzene	1.0 U	40.0	40.3	101	84-127	10	8	1.0	0.12
Bromobenzene	1.0 U	40.0	40.1	100	85-117	4	8	1.0	0.18
Bromochloromethane	1.0 U	40.0	45.5	114	80-123	2	10	1.0	0.20
Bromodichloromethane	1.0 U	40.0	47.4	119	77-130	2	8	1.0	0.19
Bromoform	1.0 U	40.0	39.3	98	52-123	8.0	10	1.0	0.23
Bromomethane	1.0 U	40.0	39.0	98	52-127	8	32	1.0	0.19
n-Butylbenzene	1.0 U	40.0	42.5	106	75-121	2	8	1.0	0.14
sec-Butylbenzene	1.0 U	40.0	44.5	111	84-118	4	9	1.0	0.12
tert-Butylbenzene	1.0 U	40.0	46.6	116	86-116	3	9	1.0	0.065
Carbon Disulfide	5.0 U	40.0	5.00		63-160		16	5.0	0.28
Carbon Tetrachloride	1.0 U	40.0	52.7	132	83-126	3	10	1.0	0.15
Chlorobenzene	1.0 U	40.0	44.5	111	89-115	2	8	1.0	0.12
Chloroethane	1.0 U	40.0	44.9	112	77-141	3	13	1.0	0.20
Chloroform	1.0 U	40.0	46.1	115	87-123	5	8	1.0	0.061
Chloromethane	1.0 U	40.0	45.3	113	66-132	2	13	1.0	0.060
Chlorotoluene	1.0 U	40.0	42.3	106	91-117	0.2	8	1.0	0.20
4-Chlorotoluene	1.0 U	40.0	42.2	106	86-116	3	8	1.0	0.13
1,2-Dibromo-3-chloropropane	1.0 U	40.0	34.8	87	56-121	11	14	1.0	0.29
Dibromochloromethane	1.0 U	40.0	40.4	101	74-110	1	9	1.0	0.14
1,2-Dibromoethane	1.0 U	40.0	42.3	106	80-117	1	8	1.0	0.22
Dibromomethane	1.0 U	40.0	42.7	107	79-124	2	8	1.0	0.14
1,2-Dichlorobenzene	1.0 U	40.0	43.2	108	89-115	2	7	1.0	0.065
1,3-Dichlorobenzene	1.0 U	40.0	42.6	106	89-114	3	8	1.0	0.12
1,4-Dichlorobenzene	1.0 U	40.0	41.3	103	87-114	0.6	8	1.0	0.13
Dichlorodifluoromethane	1.0 U	40.0	46.7	117	62-126	0	14	1.0	0.17
1,1-Dichloroethane	2.36	40.0	48.3	115	82-125	1	10	1.0	0.076
1,2-Dichloroethane	1.0 U	40.0	47.0	118	78-120	2	8	1.0	0.15
1,1-Dichloroethene	1.0 U	40.0	46.7	117	85-130	8.0	10	1.0	0.14
cis-1,2-Dichloroethene	23.2	40.0	67.2	110	84-127	1	9	1.0	0.17
trans-1,2-Dichloroethene	2.50	40.0	48.3	115	87-125	8.0	9	1.0	0.16
1,2-Dichloropropane	1.0 U	40.0	42.6	107	75-125	1	10	1.0	0.10
1,3-Dichloropropane	1.0 U	40.0	41.6	104	76-119	2	9	1.0	0.14
2,2-Dichloropropane	1.0 U	40.0	38.9	97	41-120	2	10	1.0	0.24
1,1-Dichloropropene	1.0 U	40.0	47.0	117	83-124	2	9	1.0	0.17
cis-1,3-Dichloropropene	1.0 U	40.0	35.7	89	68-122	1	9	1.0	0.14
trans-1,3-Dichloropropene	1.0 U	40.0	36.2	91	66-121	0.8	9	1.0	0.16

Volatile Organic Compounds by EPA Method 8260B (Continued)

Analyte	Sample Conc.	Spike Qty.	Result	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
QC Batch: 0802831 (Continued	1) 5030B Aqueou	ıs Purge 8	k Trap/USEI	PA-8260B	h Cyon				270
Matrix Spike Duplicate (Contin Unit: ug/L	ued) 0803115	- 04 MW-1	. 4			Analyzed: Analytical I	Batch:	03/10/2008 8031245	By: JDM
Ethylbenzene	1.0 U	40.0	46.0	115	87-118	1	7	1.0	0.13
Hexachlorobutadiene	1.0 U	40.0	42.0	105	73-117	0	11	1.0	0.23
2-Hexanone	5.0 ป	40.0	5.0 U		46-149		10	5.0	0.42
Isopropylbenzene	1.0 U	40.0	45.4	114	89-121	2	9	1.0	0.12
4-Isopropyltoluene	1.0 U	40.0	40.4	101	83-116	3	8	1.0	0.057
Methyl tert-Butyl Ether	1.0 U	40.0	41.8	104	83-113	3	16	1.0	0.096
Methylene Chloride	1.0 U	40.0	47.6	119	87-119	1	11	1.0	0.051
2-Butanone (MEK)	5.0 Ų	40.0	2.53	6	62-140	69	20	5.0	0.33
4-Methyl-2-pentaпone (MIBK)	5.0 U	40.0	5.0U		54-152		9	5.0	0.38
Naphthalene	5.0 U	40.0	36.2	90	61-126	7	9	5.0	0.13
n-Propylbenzene	1.0 U	40.0	43.5	109	89-119	3	9	1.0	0.14
Styrene	1.0 ∪	40.0	36.1	90	79-114	8	8	1.0	0.11
1,1,1,2-Tetrachloroethane	1.0 U	40.0	46.0	115	85-120	1	7	1.0	0.15
1,1,2,2-Tetrachloroethane	1.0 U	40.0	36.2	90	82-126	4	9	1.0	0.10
(etrachloroethene	1.0 U	40.0	45.2	113	83-117	0,3	8	1.0	0.15
bluene	1.0 U	40.0	43.0	107	88-125	1	8	1.0	0.072
1,2,3-Trichlorobenzene	1.0 U	40.0	43.4	1.08	71-126	3	9	1.0	0.13
1,2,4-Trichlorobenzene	1.0 U	40.0	38.2	96	70-125	3	8	1.0	0.16
1,1,1-Trichloroethane	1.0 U	40.0	50.5	126	82-126	4	9	1.0	0.11
1,1,2-Trichloroethane	1.0 U	40.0	40.6	102	84-124	0.3	10	1.0	0.21
Trichloroethene	1.0 U	40.0	45.2	113	81-124	2	8	1.0	0.17
Trichlorofluoromethane	1.0 ປ	40.0	50.0	125	79-135	0.2	9	1.0	0.18
1,2,3-Trichloropropane	1.0 U	40.0	37.3	93	70-120	0.9	9	1.0	0.071
1,2,4-Trimethylbenzene	1.0 U	40.0	37.2	93	86-115	7	7	1.0	0.13
1,3,5-Trimethylbenzene	1.0 ∪	40.0	39.2	98	86-114	8	7	1.0	0.12
Vinyl Chloride	4.40	40.0	49.7	113	71-136	8	10	1.0	0.17
Xylene, Meta + Para	2.0 U	80.0	93.2	117	85-119	4	6	2.0	0.23
Xylene, Ortho	1.0 ∪	40.0	46.3	116	88-112	3	7	1.0	0.13
Surrogates									
Dibromofluoromethane				108	88-115				
1,2-Dichloroethane-d4				105	81-116				
Toluene-d8				97	<i>87-113</i>				

4-Bromofluorobenzene

105

78-116

Dissolved Metals by EPA 6000/7000 Series Methods

QC Туре	Sample Conc.	Spike Qty,	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Arsenic/USEPA-6020A	O	Stranger, Gran		- 22242000000 ₀₀₀ 000000000000000000000000	00=	Samore - 10 January			-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
QC Batch: 0802794 (Ge	neral Metals Prep)						Analyze	d: 03/18/200	8 By: DSC	
Method Blank			1.0 ປ	ug/L					1.0	0.74
Laboratory Control Sample		50.0	48.6	ug/L	97	78-114			1.0	0.74
0803066-01 MW-J2										
Matrix Spike	11.1	50.0	63.5	ug/L	105	73-127			1.0	0.74
Matrix Spike Duplicate	11.1	50.0	61.3	ug/L	100	73-127	4	20	1.0	0.74
Analyte:	Barium/USEPA-6020A	- Anno		70		N		WW	Olivi Vie	
QC Batch: 0802794 (Ge	neral Metals Prep)						Analyze	d: 03/17/200	8 By: DWJ	
Method Blank			100 U	ug/L					100	0.52
Laboratory Control Sample		50.0	48.4 J	ug/L	97	86-117			100	0.52
0803066-01 MW-J2	• •									
Matrix Spike	193	50.0	242	ug/L	97	53-142			1.0	0.52
Matrix Spike Duplicate	193	50.0	240	ug/L	92	53-142	1	20	1.0	0.52
Analyte:	Cadmium/USEPA-6020A		_							
QC Batch: 0802794 (Ge	neral Metals Prep)						Analyze	d: 03/17/200	8 By: DWJ	
Method Blank			0.20 U	ug/L					0.20	0,062
Laboratory Control Sample		50.0	46.8	ug/L	94	83-113			0.20	0.062
0803066-01 MW-J2										
Matrix Spike	0.530	50.0	50.5	ug/L	100	74-127			0.20	0.062
Matrix Spike Duplicate	0.530	50.0	49,4	ug/L	98	74-127	2	20	0.20	0,062
Analyte:	Chromium/USEPA-6020A						_			
QC Batch: 0802794 (Ge	neral Metals Prep)						Analyze	d: 03/17/200	8 By: DWJ	
Method Blank			1.0 U	ug/L					1.0	0.31
Laboratory Control Sample		50.0	48.4	ug/L	97	83-127			1.0	0.31
0803066-01 MW-J2										
Matrix Spike	<rl< td=""><td>50.0</td><td>49.4</td><td>ug/L</td><td>99</td><td>76-127</td><td></td><td></td><td>1.0</td><td>0.31</td></rl<>	50.0	49.4	ug/L	99	76-127			1.0	0.31
Matrix Spike Duplicate	<rl< td=""><td>50.0</td><td>48.4</td><td>ug/L</td><td>97</td><td>76-127</td><td>2</td><td>20</td><td>1.0</td><td>0.31</td></rl<>	50.0	48.4	ug/L	97	76-127	2	20	1.0	0.31
Analyte:	Copper/USEPA-6020A									
OC Batch, 0903704 /Co	neral Metals Pren)				V		Analyzo	d: 03/17/200	0 Bu DW/1	
QC Batch: 0802794 (Ge	incruit ricturs (TCP)						MITALYZE	u. U3/I//ZUU	O Dy. Davi	

Dissolved Metals by EPA 6000/7000 Series Methods (Continued)

QC Туре	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Copper/USEPA-6020A (Continued	1)	·		4444	Si-Mai	- dimensio	ekskimtky z	~~~~
OC Batch: 0802794 (C	ontinued) (General Metals Pre	p)					Analyze	d: 03/17/200	8 By: DWJ	
Laboratory Control Sampl		50.0	52.0	ug/L	104	87-119			1.0	0.33
0803066-01 MW-J2										
Matrix Spike	0.813	50.0	49.3	ug/L	97	73-122			1.0	0.33
Matrix Spike Duplicate	0.813	50.0	48.9	ug/L	96	73-122	0.9	20	1.0	0.33
Analyte:	Lead/USEPA-6020A	oosen				· · · · · ·		2200		
QC Batch: 0802794 (G	General Metals Prep)						Analyze	ed: 03/17/200	8 By: DWJ	
Method Blank			1.0 U	ug/L					1.0	0.33
Laboratory Control Samp	le	50.0	48.0	ug/L	96	84-120			1.0	0.33
0803066-01 MW-J2										
Matrix Spike	· · · <rl< td=""><td>50.0</td><td>48.9</td><td>ug/L</td><td>98</td><td>75-134</td><td></td><td></td><td>1.0</td><td>0.33</td></rl<>	50.0	48.9	ug/L	98	75-134			1.0	0.33
Matrix Spike Duplicate	<rl< td=""><td>50.0</td><td>48.0</td><td>ug/L</td><td>96</td><td>75-134</td><td>2</td><td>20</td><td>1.0</td><td>0.33</td></rl<>	50.0	48.0	ug/L	96	75-134	2	20	1.0	0.33
Analyte:	Mercury/USEPA-7470A				0400000000	- Waterman		Military 1974	and the second s	·
C Batch: 0802910 (7	470A Digestion - Dissolved)						Analyz	ed: 03/18/200	8 By: DSC	
4ethod Blank			0.20 U	ug/L					0.20	0.046
Laboratory Control Samp	le	2.00	2.15	ug/L	108	85-115			0.20	0.046
0803066-01 MW-J2										
Matrix Spike	<rl< td=""><td>2.00</td><td>2.21</td><td>ug/L</td><td>110</td><td>79-118</td><td></td><td></td><td>0.20</td><td>0.046</td></rl<>	2.00	2.21	ug/L	110	79-118			0.20	0.046
Matrix Spike Duplicate	<rl< td=""><td>2.00</td><td>2.16</td><td>ug/L</td><td>108</td><td>79-118</td><td>2</td><td>20</td><td>0.20</td><td>0.046</td></rl<>	2.00	2.16	ug/L	108	79-118	2	20	0.20	0.046
Analyte:	Nickel/USEPA-6020A			·			~~~		4 10-mm m m m m m m m m m m m m m m m m m m	
QC Batch: 0802794 (0	General Metals Prep)						Analyz	ed: 03/17/200	8 By: DWJ	
Method Blank			10 U	ug/L					10	0.28
Laboratory Control Samp	ole	50.0	48.8	ug/L	98	84-116			10	0.28
Analyte:	Selenium/USEPA-6020)A				w.	· •••••••••	uu incore		
OC Batch: 0802794 (0	Company Motale Drop)						Analyz	ed: 03/18/200	08 By: DSC	
THE BATCH CHAIL / 1944 OF	aenerai Metais Pretti						~ i iui y 2	ca. 00, 20, co		

Dissolved Metals by EPA 6000/7000 Series Methods (Continued)

QC Type		mple Conc.	Spike Qty.	Result	Unít	Spike % Rec.	Control Límits	RPD	RPD Limits	RL	MDL
Analyte:	Selenium /US	EPA-6020	A (Continu	ed)	Norman Norman		2002				
QC Batch: 0802794 (Co	ntinued) (General	Metals Pr	ер)					Analyze	d: 03/18/200	8 By: DSC	
Laboratory Control Sample			50.0	49.0	ug/L	98	74-110			1.0	0.92
0803066-01 MW-J2											
Matrix Spike		<rl< td=""><td>50.0</td><td>49.3</td><td>ug/L</td><td>99</td><td>59-155</td><td></td><td></td><td>1.0</td><td>0.92</td></rl<>	50.0	49.3	ug/L	99	59-155			1.0	0.92
Matrix Spike Duplicate		<rl< td=""><td>50.0</td><td>46.7</td><td>ug/L</td><td>93</td><td>59-155</td><td>5</td><td>20</td><td>1.0</td><td>0.92</td></rl<>	50.0	46.7	ug/L	93	59-155	5	20	1.0	0.92
Analyte:	Silver/USEPA	-6020A									
QC Batch: 0802794 (Ge	neral Metals Prep)		·				Analyze	d: 03/17/200	8 By: DW]	
Method Blank				0.20 U	ug/L			- 		0.20	0.12
Laboratory Control Sample			50.0	47.1	ug/L	94	84-117			0.20	0.12
0803066-01 MW-J2											
Matrix Spike	• 3	<rl< td=""><td>50.0</td><td>49.7</td><td>ug/L</td><td>99</td><td>69-128</td><td></td><td></td><td>0.20</td><td>0.12</td></rl<>	50.0	49.7	ug/L	99	69-128			0.20	0.12
Matrix Spike Duplicate		<rl< td=""><td>50.0</td><td>48.5</td><td>ug/L</td><td>97</td><td>69-128</td><td>3</td><td>20</td><td>0.20</td><td>0.12</td></rl<>	50.0	48.5	ug/L	97	69-128	3	20	0.20	0.12
Analyte:	Zinc/USEPA-6	020A			· · · · · · · · · · · · · · · · · · ·						7
C Batch: 0802794 (Ge	neral Metals Prep)						Analyze	d: 03/17/200	8 By: DWJ	2.10
.rethod Blank				4.80 J	ug/L					10	0.84
Laboratory Control Sample			50.0	53.3	ug/L	107	74-138			10	0.84
0803066-01 MW-J2									*		
Matrix Spike		5.73	50.0	98.1	ug/L	185	61-141			1.0	0.84
Matrix Spike Duplicate		5.73	50.0	57.5	ug/L	103	61-141	52	20	1.0	0.84

Total Metals by EPA 6000/7000 Series Methods

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Arsenic/USEPA-6020A					NO				
QC Batch: 0802654 (3020	OA Digestion)						Analyze	d: 03/12/200	8 By: DWJ	***
Method Blank			1.0 U	ug/L					1.0	0.74
Laboratory Control Sample		50.0	46.0	ug/L	92	80-114			1.0	0.74
0803066-01 MW-J2										
Matrix Spike	10.9	50.0	58.6	ug/L	95	81-119			1.0	0.74
Matrix Spike Duplicate	10.9	50.0	59.4	ug/L	97	81-119	1	20	1.0	0.74
QC Batch: 0802654 (302)	OA Digestion)						Analyze	d: 03/13/200	8 By: DSC	
Method Blank			1.0 U	ug/L					1.0	0.74
Laboratory Control Sample		50.0	46.1	ug/L	92	80-114			1.0	0.74
Analyte:	Barium/USEPA-6020A									
QC Batch: 0802654 (302	0A Digestion)				7337 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyze	d: 03/12/200	8 By: DWJ	***************************************
Method Blank			1.0 U	ug/L					1.0	0.52
Laboratory Control Sample		50.0	47.9	ug/L	96	83-117			1.0	0.52
Q803066-01 MW-J2										
atrix Spike	179	50.0	229	ug/L	99	77-124			1.0	0.52
Matrix Spike Duplicate	179	50.0	229	ug/L	100	77-124	0.3	20	1.0	0.52
Analyte:	Cadmium/USEPA-6020A									
QC Batch: 0802654 (302	OA Digestion)				-11-05%	2111	Analyze	d: 03/12/200	8 By: DWJ	
Method Blank			0.20 U	ug/L					0.20	0.062
Laboratory Control Sample	•	50.0	44.8	ug/L	90	80-114			0.20	0.062
0803066-01 MW-J2										
Matrix Spike	1.16	50.0	48.9	ug/L	95	82-119			0.20	0.062
Matrix Spike Duplicate	1.16	50.0	50.1	ug/L	98	82-119	3	20	0.20	0.062
Analyte:	Chromium/USEPA-6020A	i.								
QC Batch: 0802654 (302	0A Digestion)						Analyze	d: 03/12/200	8 By: DWJ	015,000
Method Blank			1.0 U	ug/L					1.0	0.31
ricalog blank										

Total Metals by EPA 6000/7000 Series Methods (Continued)

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Chromium/USEPA-6020)A (Contir	nued)							
QC Batch: 0802654 (Co	ntinued) (3020A Digestion)						Analyze	ed: 03/12/200	8 By: DWJ	
0803066-01 MW-J2										
Matrix Spike	4.80	50.0	52.2	ug/L	95	82-122			1.0	0.31
Matrix Spike Duplicate	4.80	50.0	53.1	ug/L	97	82-122	2	20	1.0	0.31
Analyte:	Copper/USEPA-6020A									****
QC Batch: 0802654 (30	20A Digestion)						Analyze	ed: 03/12/200	8 By: DWJ	
Method Blank			1.0 U	ug/L					1.0	0.33
Laboratory Control Sample		50.0	46.1	ug/L	92	86-119			1.0	0.33
0803066-01 MW-J2										
Matrix Spike	1.27	50.0	47.7	ug/L	93	81-118			1.0	0.33
Matrix Spike Duplicate	1.27	50.0	48.2	ug/L	94	81-118	1	20	1.0	0.33
QC Batch: 0802862 (30	20A Digestion)						Analyze	ed: 03/17/200	8 By: MSM	
Method Blank	nara (Canada) (Canada) (Canada)		0.4 9 0 J	ug/L					1.0	0.33
Laboratory Control Sample		50.0	48.8	ug/L	98	86-119			1.0	0.33
⊿nalyte:	Iron/USEPA-6010B									
QC Batch: 0802657 (30	110A Digestion)	3000				- 1000	Analyze	ed: 03/18/200	8 By: KLV	
Method Blank			10 U	ug/L			·		10	5.7
Laboratory Control Sample	!	400	410	ug/L	103	85-113			10	5.7
0803066-03 MW-17										
Matrix Spike	1070	400	1540	ug/L	118	73-132			10	5.7
Matrix Spike Duplicate	1070	400	1480	ug/L	105	73-132	4	20	10	5.7
Analyte:	Lead/USEPA-6020A					_				
QC Batch: 0802654 (30	20A Digestion)						Analyze	ed: 03/12/200	8 By; DWJ	
Method Blank			1.0 U	ug/L					1.0	0.33
Laboratory Control Sample	1	50.0	45.4	ug/L	91	80-116			1.0	0.33
0803066-01 MW-J2										
Matrix Spike	0.668	50.0	48.3	ug/L	95	82-122			1.0	0.33
Matrix Spike Duplicate	0.668	50.0	49.1	ug/L	97	82-122	2	20	1.0	0.33
•				•						

Total Metals by EPA 6000/7000 Series Methods (Continued)

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDI
Analyte:	Manganese/USEPA-60	20A			10000			0000		
QC Batch: 0802654 (30	20A Digestion)						Analyzed:	03/13/200	8 By: DSC	
Method Blank			1.0 U	ug/L					1.0	0.43
Laboratory Control Sample		50.0	48.7	ug/L	97	84-124			1.0	0.43
Analyte:	Mercury/USEPA-7470A				W2-17	WH,	Westerman .		Total Control	
QC Batch: 0802738 (74	70A Digestion - Total)						Analyzed:	03/12/200	8 By: JMF	
Method Blank			0.20 U	ug/L					0.20	0.04
Laboratory Control Sample		2.00	2.08	ug/L	104	85-115			0.20	0.046
0803066-01 MW-J2										
Matrix Spike	<rl< td=""><td>2.00</td><td>2.07</td><td>ug/L</td><td>104</td><td>72-122</td><td></td><td></td><td>0.20</td><td>0.046</td></rl<>	2.00	2.07	ug/L	104	72-122			0.20	0.046
Matrix Spike Duplicate	<rl< td=""><td>2.00</td><td>2.08</td><td>ug/L</td><td>104</td><td>72-122</td><td>0.09 2</td><td>0</td><td>0.20</td><td>0.046</td></rl<>	2.00	2.08	ug/L	104	72-122	0.09 2	0	0.20	0.046
Analyte:	Nickel/USEPA-6020A				-2					
QC Batch: 0802654 (30	20A Digestion)						Analyzed:	03/12/200	8 By: DWJ	
Method Blank			1.0 U	ug/L					1.0	0.2
iboratory Control Sample		50.0	1.0 U	ug/L		85-115			1.0	0.2
√803066-01 MW-J2										
Matrix Spike		50.0	1.0 U	ug/L		79-118			1.0	0.2
Matrix Spike Duplicate	W000	50.0	1.0 U	ug/L		79-118	21	0	1.0	0.28
QC Batch: 0802654 (30	20A Digestion)						Analyzed:	03/13/200	8 By: DSC	,
Method Blank			1.0 U	ug/L					1.0	0.28
Laboratory Control Sample		50.0	48.7	ug/L	97	85-115			1.0	0.28
Analyte:	Selenium/USEPA-6020	A		200						
QC Batch: 0802654 (30	20A Digestion)						Analyzed:	03/13/200	8 By: DSC	
Method Blank			1.0 U	ug/L			4		1.0	0.92
Laboratory Control Sample	•	50.0	47.9	ug/L	96	71-115			1.0	0.9
0803066-01 MW-J2										
Matrix Spike	<rl< td=""><td>50.0</td><td>48.8</td><td>ug/L</td><td>98</td><td>65-123</td><td></td><td></td><td>1.0</td><td>0.93</td></rl<>	50.0	48.8	ug/L	98	65-123			1.0	0.93
Marix Spike	~1\L	20.0	440	-9, -	50	05 125			1.0	0.5.

Total Metals by EPA 6000/7000 Series Methods (Continued)

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Silver/USEPA-6020A							 -		
QC Batch: 0802654 (30	20A Digestion)						Analyze	ed: 03/12/200	08 By: DWJ	
Method Blank			0.20 U	ug/L					0.20	0.12
Laboratory Control Sample		50.0	44.9	ug/L	90	84-115			0.20	0.12
0803066-01 MW-J2										
Matrix Spike	<rl< td=""><td>50.0</td><td>47.1</td><td>ug/L</td><td>94</td><td>80-115</td><td></td><td></td><td>0.20</td><td>0.12</td></rl<>	50.0	47.1	ug/L	94	80-115			0.20	0.12
Matrix Spike Duplicate	<rl< td=""><td>50.0</td><td>46.4</td><td>ug/L</td><td>93</td><td>80-115</td><td>2</td><td>20</td><td>0.20</td><td>0.12</td></rl<>	50.0	46.4	ug/L	93	80-115	2	20	0.20	0.12
Analyte:	Zinc/USEPA-6020A		-							
QC Batch: 0802654 (30	20A Digestion)				201		Analyze	ed: 03/12/200	08 By: DWJ	
Method Blank			13.8	ug/L					1.0	0.84
*Laboratory Control Sampl	e 	50.0	46.5 B	ug/L	93	82-126			1.0	0.84
QC Batch: 0802862 (30	20A Digestion)						Analyze	ed: 03/17/200	08 By: MSM	340,
Method Blank			2.00]	ug/L					10	0.84
Laboratory Control Sample		50.0	59.5	ug/L	119	82-126			10	0.84
-Ω803066-01 MW-J2										
atrix Spike	19.8	50.0	59.7	ug/L	80	63-119			1.0	0.84
Matrix Spike Duplicate	19.8	50.0	62.6	ug/L	86	63-119	5	20	1.0	0.84

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

· · · · · · · · · · · · · · · · · · ·										
QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Annlida		A 740 4		· · · · · · · · · · · · · · · · · · ·						
Analyte: ,	Alkalinity, Total/USEP	A-310.1	 	·····		······································				
QC Batch: 0802566 (Gene	eral Inorganic Prep)						Analyzed	1: 03/06/200	08 By: CAM	
Method Blank			2000 U	ug/L					2000	1800
Laboratory Control Sample		238000	240000	ug/L	101	91-110			2000	1800
0803066-04 MW-B1										
Matrix Spike	390000	238000	640000	ug/L	105	78-117			2000	1800
Duplicate	390000		393000	ug/L			8.0	20	2000	1800
Analyte:	Chemical Oxygen De	mand/US	SEPA-410.4	ļ		***			79	
QC Batch: 0802859 (410.	.4 COD Digestion)						Analyzed	d: 03/13/200	08 By: CKD	
Method Blank			5000 U	ug/L					5000	2200
Laboratory Control Sample	•	20000	21200	ug/L	106	90-110			5000	2200
0803066-03 MW-17	• 1									
Matrix Spike	10900	20000	31800	ug/L	105	64-148			500 0	2200
Matrix Spike Duplicate	10900	20000	31500	ug/L	103	64-148	1	20	5000	2200
Matrix Spike Duplicate	10900 Chromium, Hexavale					64-148	1	20	5000	2200
Matrix Spike Duplicate	Chromium, Hexavale					64-148		20 d: 03/06/200		2200
Matrix Spike Duplicate Analyte:	Chromium, Hexavale					64-148				0.60
Matrix Spike Duplicate Analyte: QC Batch: 0802594 (Meth	Chromium, Hexavale		olved/SM 3	3500-Cr B		86-113			08 By: INR	
Analyte: QC Batch: 0802594 (Methydether)	Chromium, Hexavale	nt-Disso	olved/SM 3	8500-Cr B	20th				08 By: INR 5.0	0.60
Matrix Spike Duplicate Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample	Chromium, Hexavale	nt-Disso	olved/SM 3	8500-Cr B	20th				08 By: INR 5.0	0.60
Matrix Spike Duplicate Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample 0803066-03 MW-17	Chromium, Hexavale hod-Specific Preparation)	nt-Disso	5.0 U 9.30	ug/L ug/L	20th 93	86-113	Analyzeo		08 By: INR 5.0 5.0	0.60
Matrix Spike Duplicate Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample 0803066-03 MW-17 Matrix Spike	Chromium, Hexavale hod-Specific Preparation) <rl <rl<="" td=""><td>10.0 20.0</td><td>5.0U 9.30 20.5</td><td>ug/L ug/L ug/L</td><td>93 102</td><td>86-113 61-147</td><td>Analyzed</td><td>i: 03/06/200</td><td>08 By: INR 5.0 5.0 5.0 5.0</td><td>0.60 0.60 0.60</td></rl>	10.0 20.0	5.0U 9.30 20.5	ug/L ug/L ug/L	93 102	86-113 61-147	Analyzed	i: 03/06/200	08 By: INR 5.0 5.0 5.0 5.0	0.60 0.60 0.60
Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample 0803066-03 MW-17 Matrix Spike Matrix Spike Duplicate	Chromium, Hexavale hod-Specific Preparation) <rl <rl<="" td=""><td>10.0 20.0</td><td>5.0U 9.30 20.5</td><td>ug/L ug/L ug/L</td><td>93 102</td><td>86-113 61-147</td><td>Analyzed</td><td>d: 03/06/200</td><td>08 By: INR 5.0 5.0 5.0 5.0</td><td>0.60 0.60 0.60</td></rl>	10.0 20.0	5.0U 9.30 20.5	ug/L ug/L ug/L	93 102	86-113 61-147	Analyzed	d: 03/06/200	08 By: INR 5.0 5.0 5.0 5.0	0.60 0.60 0.60
Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample 0803066-03 MW-17 Matrix Spike Matrix Spike Duplicate QC Batch: 0802594 (Method Blank)	Chromium, Hexavale hod-Specific Preparation) <rl <rl<="" td=""><td>10.0 20.0</td><td>5.0 U 9.30 20.5 20.0</td><td>ug/L ug/L ug/L ug/L ug/L</td><td>93 102</td><td>86-113 61-147</td><td>Analyzed</td><td>d: 03/06/200</td><td>08 By: INR 5.0 5.0 5.0 5.0 5.0</td><td>0.60 0.60 0.60 0.60</td></rl>	10.0 20.0	5.0 U 9.30 20.5 20.0	ug/L ug/L ug/L ug/L ug/L	93 102	86-113 61-147	Analyzed	d: 03/06/200	08 By: INR 5.0 5.0 5.0 5.0 5.0	0.60 0.60 0.60 0.60
Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample 0803066-03 MW-17 Matrix Spike Matrix Spike Duplicate QC Batch: 0802594 (Method Blank Laboratory Control Sample	Chromium, Hexavale hod-Specific Preparation) <rl <rl<="" td=""><td>10.0 20.0 20.0</td><td>5.0 U 9.30 20.5 20.0 5.0 U</td><td>ug/L ug/L ug/L ug/L ug/L ug/L</td><td>93 102 100</td><td>86-113 61-147 61-147</td><td>Analyzed</td><td>d: 03/06/200</td><td>08 By: INR 5.0 5.0 5.0 5.0 5.0</td><td>0.60 0.60 0.60</td></rl>	10.0 20.0 20.0	5.0 U 9.30 20.5 20.0 5.0 U	ug/L ug/L ug/L ug/L ug/L ug/L	93 102 100	86-113 61-147 61-147	Analyzed	d: 03/06/200	08 By: INR 5.0 5.0 5.0 5.0 5.0	0.60 0.60 0.60
Analyte: QC Batch: 0802594 (Method Blank Laboratory Control Sample 0803066-03 MW-17 Matrix Spike Matrix Spike Duplicate QC Batch: 0802594 (Method Blank Laboratory Control Sample	Chromium, Hexavale hod-Specific Preparation) <rl <rl="" chromium,="" hexavale<="" hod-specific="" preparation)="" td=""><td>10.0 20.0 20.0</td><td>5.0 U 9.30 20.5 20.0 5.0 U</td><td>ug/L ug/L ug/L ug/L ug/L ug/L</td><td>93 102 100</td><td>86-113 61-147 61-147</td><td>Analyzed 2 Analyzed</td><td>d: 03/06/200</td><td>5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0</td><td>0.60 0.60 0.60 0.60</td></rl>	10.0 20.0 20.0	5.0 U 9.30 20.5 20.0 5.0 U	ug/L ug/L ug/L ug/L ug/L ug/L	93 102 100	86-113 61-147 61-147	Analyzed 2 Analyzed	d: 03/06/200	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.60 0.60 0.60 0.60
Matrix Spike Duplicate Analyte: QC Batch: 0802594 (Metrix Method Blank Laboratory Control Sample 0803066-03 MW-17 Matrix Spike Matrix Spike Duplicate QC Batch: 0802594 (Metrix Method Blank Laboratory Control Sample Analyte:	Chromium, Hexavale hod-Specific Preparation) <rl <rl="" chromium,="" hexavale<="" hod-specific="" preparation)="" td=""><td>10.0 20.0 20.0</td><td>5.0 U 9.30 20.5 20.0 5.0 U</td><td>ug/L ug/L ug/L ug/L ug/L ug/L</td><td>93 102 100</td><td>86-113 61-147 61-147</td><td>Analyzed 2 Analyzed</td><td>d: 03/06/200 20 d: 03/07/200</td><td>5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0</td><td>0.60 0.60 0.60 0.60</td></rl>	10.0 20.0 20.0	5.0 U 9.30 20.5 20.0 5.0 U	ug/L ug/L ug/L ug/L ug/L ug/L	93 102 100	86-113 61-147 61-147	Analyzed 2 Analyzed	d: 03/06/200 20 d: 03/07/200	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.60 0.60 0.60 0.60

Physical/Chemical Parameters by EPA/APHA/ASTM Methods (Continued)

QC Type	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Chromium, Hexavalent	/SM 35	00-Cr B 20	th (Cont	inued)		- 100g, yr 100	27 - 62mm - 102yr		
QC Batch: 0802595 (Con	tinued) (Method-Specific Prep	aration)					Analyze	d: 03/06/200	8 By: INR	
0803066-03 MW-17										
Matrix Spike	1.10 J	20.0	20.6 J	ug/L	98	54-142			50	0.60
Matrix Spike Duplicate	1.10 J	20.0	21.4]	ug/L	102	54-142	4	20	50	0.60
QC Batch: 0802595 (Meth	nod-Specific Preparation)						Analyze	d: 03/07/200	8 By: INR	- "
Method Blank	*·· · · · · · · · · · · · · · · · · · ·		5.0 U	ug/L		· · · · · · · · · · · · · · · · · · ·		<u> </u>	5.0	0.60
Laboratory Control Sample		10.0	10.1 3	ug/L	101	86-113			50	0.60
Analyte:	Cyanide, Available /USE	PA OIA	-1677							
QC Batch: 0802973 (Meti	nod-Specific Preparation)						Analyze	d: 03/13/200	8 By: VAS	
Method Blank	• •		2.0 U	ug/L					2.0	1.0
Laboratory Control Sample		5.00	5.3900	ug/L	108	82-132			2.0	1.0
0803066-01 MW-J2										
Matrix Spike	<rl< td=""><td>8.00</td><td>7.1620</td><td>ug/L</td><td>90</td><td>82-130</td><td></td><td></td><td>2.0</td><td>1.0</td></rl<>	8.00	7.1620	ug/L	90	82-130			2.0	1.0
Matrix Spike Duplicate	<rl< td=""><td>8.00</td><td>7.6070</td><td>ug/L</td><td>95</td><td>82-130</td><td>6</td><td>11</td><td>2.0</td><td>1.0</td></rl<>	8.00	7.6070	ug/L	95	82-130	6	11	2.0	1.0
Analyte:	Cyanide, Total/USEPA-9	014								
QC Batch: 0802652 (9010	OB Cyanide Distillation)		<u> </u>				Analyze	d: 03/10/200	8 By: VAS	
Method Blank	<u> </u>	••	5.0 U	ug/L		***		· · · · · · · · · · · · · · · · · · ·	5.0	1.9
Method Blank			5.0 U	ug/L					5.0	1.9
Laboratory Control Sample		100	96.2	ug/L	96	90-110			5.0	1.9
Laboratory Control Sample		40.0	38.6	ug/L	97	90-110			5.0	1.9
Laboratory Control Sample		100	98.4	ug/L	98	90-110			5.0	1.9
Laboratory Control Sample		40.0	35.9	ug/L	90	90-110			5.0	1.9
0803066-01 MW-J2										
Matrix Spike	45.4	100	145	ug/L	100	59-128			5.0	1.9
Matrix Spike Duplicate	45,4	100	146	ug/L	100	59-128	0.05	20	5.0	1.9
0803115-04 MW-14										
Matrix Spike	<rl< td=""><td>100</td><td>100</td><td>ug/L</td><td>100</td><td>59-128</td><td></td><td></td><td>5.0</td><td>1.9</td></rl<>	100	100	ug/L	100	59-128			5.0	1.9
Matrix Spike Duplicate	<rl< td=""><td>100</td><td>97.2</td><td>ug/L</td><td>97</td><td>59-128</td><td>3</td><td>20</td><td>5.0</td><td>1.9</td></rl<>	100	97.2	ug/L	97	59-128	3	20	5.0	1.9
Analyte:	Hardness as CaCO3/US	EPA-13	0.2							
QC Batch: 0802733 (Met	hod-Specific Preparation)						Analyze	d: 03/11/200	8 By: CKD	
Method Blank			2000 U	ug/L					2000	1400

Physical/Chemical Parameters by EPA/APHA/ASTM Methods (Continued)

QC Туре	Sample Conc.	Spike Qty.	Result	Unit	Spike % Rec.	Control Limits	RPD	RPD Limits	RL	MDL
Analyte:	Hardness as CaCO3/L	JSEPA-13	0.2 (Contir	nued)		a		*****		
QC Batch: 0802733 (Cor	ntinued) (Method-Specific Pr	eparation)					Analyze	d: 03/11/20	08 By: CKD	
Laboratory Control Sample		200000	202000	ug/L	101	92-110			2000	1400
0803066-03 MW-17										
Matrix Spike	413000	200000	616000	ug/L	102	86-113			2000	1400
Duplicate	413000		412000	ug/L			0.2	20	2000	1400
Analyte:	Iron, Ferrous/SM 3500)-Fe B 20	th							
QC Batch: 0802719 (Me	thod-Specific Preparation)		·	 _			Analyze	d: 03/07/20	08 By: HLB	
Method Blank			20 U	ug/L					20	7.0
Laboratory Control Sample		320	296	ug/L	93	80-120			20	7.0
0803066-03 MW-17										
Matrix Spike	803	1600	2330	ug/L	95	68-131			100	35
Duplicate	803		820	ug/L			2	20	100	35
Analyte:	Nitrogen, Nitrate+Ni	trite /USI	EPA-353.2	7000	May		VO. 100		200	
C Batch: 0802726 (Me	thod-Specific Preparation)						Analyze	d: 03/06/20	08 By: HLB	
.4ethod Blank			50 U	ug/L					50	7.2
Laboratory Control Sample		500	495	ug/L	99	90-110			50	7.2
0803066-03 MW-17										
Matrix Spike	185	500	676	ug/L	98	90-110			50	7.2
Matrix Spike Duplicate	185	500	694	ug/L	102	90-110	3	20	50	7.2
Analyte:	Sulfate/USEPA-375.4				Martin 1900 - All Control of the Con	Waanna - A Kabaany				·
QC Batch: 0802685 (Ge	neral Inorganic Prep)						Analyze	d: 03/10/20	08 By: GEH	
Method Blank			5000 U	ug/L					5000	1200
Laboratory Control Sample		20000	21200	ug/L	106	88-112			5000	1200
0803066-03 MW-17										
Matrix Spike	53000	20000	73200	ug/L	101	76-126			25000	5800
Matrix Spike Duplicate	53000	20000	72500	ug/L	98	76-126	1	20	25000	5800
Analyte:	Sulfide, Total/USEPA-	9034								
QC Batch: 0802753 (General Inorganic Prep)					· · · · · · · · · · · · · · · · · · ·		Analyze	d: 03/11/20	08 By: KNC	- Phase
Method Blank		····· ·	1000 U	ug/L					1000	1000

Physical/Chemical Parameters by EPA/APHA/ASTM Methods (Continued)

QC Type	San Co	onc.	Qty.	Result	Unit	% Rec.	Limits	RPD	Limits	RL	MDL
Analyte:	Sulfide, Total/	USEPA-9	034 (Con	tinued)			vanias				
QC Batch: 0802753	(Continued) (General I	norganic F	rep)					Analyzed	: 03/11/200	8 By: KNC	
Laboratory Control Sa	mple		59500	37800	ug/L	64	44-116	- "		1000	1000
0803066-04 MW-B	1										
Matrix Spike		<rl< td=""><td>59500</td><td>42100</td><td>ug/L</td><td>71</td><td>41-99</td><td></td><td></td><td>1000</td><td>1000</td></rl<>	59500	42100	ug/L	71	41-99			1000	1000
Duplicate	•	<rl td="" u<=""><td></td><td>1000 U</td><td>ug/L</td><td></td><td></td><td>;</td><td>20</td><td>1000</td><td>1000</td></rl>		1000 U	ug/L			;	20	1000	1000

Volatile Organic Compounds by EPA Method 8260B

Qualification: The LCS and/or LCSD recovery exceeded the upper control limit. A positive result for this

analyte in any sample from the associated QC batch is considered estimated. Non-detectable

results are not qualified.

Analysis: USEPA-8260B

Sample/Analyte: 0803066-01 MW-J2 tert-Butylbenzene

0803066-01 MW-J2 Xylene, Ortho 0803066-02 MW-B2 tert-Butylbenzene 0803066-02 MW-B2 Xylene, Ortho tert-Butylbenzene 0803066-03 MW-17 0803066-03 MW-17 Xylene, Ortho tert-Butylbenzene 0803066-05 MW-22 Xvlene, Ortho 0803066-05 MW-22 0803066-07 MW-26 tert-Butylbenzene 0803066-07 MW-26 Xylene, Ortho

0803066-07 MW-26 Aylene, Ortho
0803066-09 FB-1 tert-Butylbenzene
0803066-09 FB-1 Xylene, Ortho
0803115-04 MW-14 tert-Butylbenzene

0803115-04 MW-14 Xylene, Ortho

Qualification: Reanalysis was not possible due to insufficient sample.

Analysis: USEPA-8260B

Qualification: Matrix spike was not spiked with full list of target analytes, insufficient sample volume for

re-analysis.

0803115-03 MW-24

Analysis: USEPA-8260B

Sample/Analyte:

Sample/Analyte: 0803115-04 MW-14

Qualification: The RPD between the MS and MSD results exceeded the control limit. The non-spiked sample

result is considered estimated.

Analysis: USEPA-8260B

Sample/Analyte: 0803115-04 MW-14 1,3,5-Trimethylbenzene

0803115-04 MW-14 Benzene

Qualification: The MS and/or MSD recovery exceeded the upper control limit. The non-spiked sample result

for the same analyte was non-detect and is not qualified.

Analysis: USEPA-8260B

Sample/Analyte: 0803115-04 MW-14 Carbon Tetrachloride

0803115-04 MW-14 Xylene, Ortho

Qualification: The MS or MSD recovery, but not both, was outside the control limit. The RPD is within the

control limit. The unspiked sample result is not qualified.

Analysis: USEPA-8260B

Sample/Analyte: 0803115-04 MW-14 1,1,1-Trichloroethane

Qualification: One or more surrogate recoveries for the sample exceeded the upper control limit. Positive

results are considered estimated. Non-detect results are not qualified.

Analysis: USEPA-8260B

Sample/Analyte: 0803115-03 MW-24

Page 98 of 101

Volatile Organic Compounds by EPA Method 8260B (Continued)

Qualification:

One or more surrogate recoveries for the sample exceeded the upper control limit. Positive

results are considered estimated. Non-detect results are not qualified.

Analysis:

USEPA-8260B

STATEMENT OF DATA QUALIFICATIONS

Dissolved Metals by EPA 6000/7000 Series Methods

Qualification:

The % difference between the values of the isotopes monitored for this analyte exceeded 25%;

the lower of the two results has been reported.

Analysis:

USEPA-6020A

Sample/Analyte:

0803066-01 MW-J2

Selenium

Sample/Alteryce.

0803066-02 MW-B2

Selenium

0803066-03 MW-17

Selenium

0803066-05 MW-22

Selenium

0803066-07 MW-26

Selenium

Q803066-08 DUP-1

Selenium

Qualification:

This analyte was not present in this sample at a concentration greater than 100 times the MDL,

therefore serial dilution is not required.

Analysis:

USEPA-6020A

Sample/Analyte:

0803066-01, MW-J2

Arsenic

Qualification:

The MS and/or MSD recovery was outside the control limit. The non-spiked sample result is

considered estimated.

Analysis:

USEPA-6020A

Sample/Analyte:

0803066-01 MW-J2

Zinc

Qualification:

The RPD between the MS and MSD results exceeded the control limit. The non-spiked sample

result is considered estimated.

Analysis:

USEPA-6020A

Sample/Analyte:

0803066-01 MW-J2

Zinc

Total Metals by EPA 6000/7000 Series Methods

Qualification:

The analyte concentration in the associated MB was greater than or equal to the RL. The

positive sample result, which was greater than 5 times the MB value, is not considered

estimated.

Analysis:

USEPA-6020A

Sample/Analyte:

0803115-02 MW-11

Zinc

Qualification:

The % difference between the values of the isotopes monitored for this analyte exceeded 25%;

the lower of the two results has been reported.

Analysis:

USEPA-6020A

Sample/Analyte:

0803066-01 MW-J2

Copper

0803066-05 MW-22

Nickel

0803066-07 MW-26

Nickel

Qualification:

This analyte was not present in this sample at a concentration greater than 100 times the MDL,

therefore serial dilution is not required.

Analysis:

USEPA-6020A

Sample/Analyte:

0803066-01 MW-J2

Chromium

Physical/Chemical Parameters by EPA/APHA/ASTM Methods

Qualification:

Sample analysis performed on NaOH preserved bottle.

Analysis:

USEPA OIA-1677

Sample/Analyte:

0803066-01 MW-J2

Cyanide, Available

Qualification:

The referenced method for Iron, Ferrous specifies that analysis must occur immediately after sample collection. Since the analysis was not performed in the field, the reported result is

considered estimated.

Analysis:

SM 3500-Fe B 20th

Sample/Analyte:

0803066-03 MW-17

Iron, Ferrous

0803066-04 MW-B1

Iron, Ferrous

Qualification:

This method provides quantitative results for "acid-soluble" sulfides only. The semi-quantitative procedure for "acid-insoluble" sulfides (e.g. CuS and SnS) was not performed due to the poor

recovery of these "acid-insoluble" complexes.

Analysis:

USEPA-9034

Sample/Analyte:

0803066-03 MW-17

Sulfide, Total

0803066-04 MW-B1

Sulfide, Total

TriMatrix Laboratorics, Inc.

5560 Corporate Exchange Court SF Grand Rapids, MI 49912 Phon (610) 978-4800 (ax 1616) 942-7463

COUNT 123480 Chain of Custody Record

No the HIBS WY AN THE NORTH Page July THE REAL PROPERTY. A NOW pills B HNG par 7 Analyses Requested Charles to do Ke 3-5-8 1445 3.5.0815.15T 1577 FACS 1435 35.8 1340 3 5 5 5 th 40 3763 1560 3 166 のの日本を Sample 3508 1115 Constitution Sample Sample A. OPSTEAL Invoce No. Preprint Name CT C www.cimmfrixlishs.com Water's CHERSON BREITEN MI 45116 130 - 6 CTT and 1540. Free-52 Mer-BJ MESTBI Mer - 17 Stanger 130 22-76 MINTZE (12--7 LX) - AND 1805 M FB-For Lab Use Only See See Commercial Control Con Receipt Log No.

C. HANNICKLY ASSCHARS 3 sasspled.By (prist)

Beew Shipped? Hand Castory

MASK CONSTITUTED

ATLION CODY-LABORATORS

TriMatrix Laboratories, Inc.

For Lab Use Only

SAMI appendo I valuago Cosa M. Grand Rapida, MI 49512. Phone (614) 975-3500 Fax (016) 942-3463 mesonale sometimes were

00 No. 122555 Chain of Custody Record

Amalyses Requested

Page Lof / STREET STREET

FAREHON K

DINKINE

Card Oste) B HNO, pHY 2

N. Wana

Cody By Sample Sample Date

Sample 158

Laborana's Sample

Test Malms doup! Upde

anothery Prepart No.

1213 35:05 1445

221 824

MELL

ガラーン

4.

O Shkt (commercial

が必然をう

· TOP CONTRACTOR

BALLY NO

BRUTEN MI 48116

CHANGE THE STORY OF THE STORY O

Type Mary JUL

CIT ON ASSECTIONS

MARCH EMERSON

Recent Low No. VOX TEKTON

: Iligibus sessigili

H DESCREEKS NOW

N X OV X

.^ 7 7

0.8

MILLIN MYD

177-752-70g

WE THE MAN

1-78

0

2 M. 3 t

(E)

MAK COPY - FIRED

YELLOW COPY - LABORALORY

WELLS CHEWART

THINDING CONT.

11.10

Ě

2. Rohman Act So

× 313

edition and the

The Shipped! Albus Centel.

G HINNERLY

Sampled By opnin

RRIVER

frackey No.

1,22

ATTACHMENT 3 BASELINE ECOLOGICAL RISK ASSESSMENT

BASELINE ECOLOGICAL RISK ASSESSMENT JCI FORMER STANLEY TOOL WORKS FOWLERVILLE, MICHIGAN

Prepared by
ENTACT Environmental Services, LLC

March 2008

Baseline Ecological Risk Assessment JCI Former Stanley Tool Works Fowlerville, Michigan

TABLE OF CONTENTS

Sec	tion				<u>Page</u>
1.		Intro	ductio	n and Objectives	1
	1.1			Н	
	1.2	REI	PORT	ORGANIZATION	2
2.		Site 1	Backgr	ound	4
	2.1	SIT	E DES	CRIPTION	4
	2.2	SIT	E HIST	ORY	4
	2.3	EC	OLOGI	CAL DESCRIPTION	7
3.		Prob	lem Fo	rmulation	11
	3.1	CO:	NTAM	INANT FATE AND TRANSPORT AND ECOTOXICITY	11
	3.2			E EXPOSURE PATHWAYS AND CONCEPTUAL SITE	
		MC	DEL		13
	3.3	AS:	SESSM	ENT AND MEASUREMENT ENDPOINTS	13
١.		Ecol	ogical l	Field Investigation	15
	4.1	Sed	iment (Chemistry	19
	4.2			esting	
	4.3	Cor	nmunit	y Studies	22
5.		Cha	racteri	ration of Exposure and Effects	25
	5.1	CH		TERIZATION OF EXPOSURE (DATA ANALYSIS)	25
			5.1.1	Sediment Chemistry	
			5.1.2	Bioassays	
			5.1.3	Community Studies	27
	-	5.2		RACTERIZATION OF EFFECTS	21
			5.2.1 5.2.2	Sediment Chemistry	
			5.2.3	Bioassays Community Studies	
			2.4.3	Community Studies	
6.		Risk	Chara	cterization	32
	(5.1	RISK	ESTIMATION	32
			6.2.1	Sediment Chemistry	
			6.2.2	Bioassays	
			6.2.3	Community Studies	
	6.2	UN		AINTY ANALYSIS	41
	6.3	RIS	SK DES	CRIPTION	43

Baseline Ecological Risk Assessment JCI Former Stanley Tool Works Fowlerville, Michigan

TABLE OF CONTENTS continued

7.	UŁ	VELOPMENT OF SITE-SPECIFIC CLEAN-UP LEVELS 22
	7.1	Chemicals of Concern in Sediment
	7.2	Background Threshold Values
	7.3	Proposed Cleanup Levels
8.	RF	FERENCES 45

TABLES	
Table 3-1	Assessment and Measurement Endpoints
Table 4-1	Summary of Sediment Sample Locations
Table 4-2	Summary of River Measurements
Table 4-3	Summary of Field Water Quality Parameters
Table 5-1	Sediment Chemistry Results
Table 5-2	Bioassay Results
Table 5-3	Benthic Macroinvertebrate Sample Composition
Table 5-4	Benthic Macroinvertebrate Community Survey Results
Table 6-1	Comparison to Sediment Quality Benchmarks
Table 6-2	Mean Probable Effect Concentration Quotients (PEC-Q) for Metals
Table 6-3	Benthic Macroinvertebrate Community Analysis
Table 6-4	Benthic Macroinvertebrte Community Metrics
Table 6-5	Lines of Evidence for Assessing Impacts on Aquatic Ecosystems at Measured Sediment Concentrations
Table 7-1	Arsenic Statistical Evaluation
Table 7-2	Statistical Evaluation of BERA Sediment Data
Table 7-3	Background Threshold Values
FIGURES	
Figure 2-1	Site Location Map
Figure 3-2	Conceptual Site Model
Figure 4-1	Sample Location Map
APPENDIX	
Appendix A	Site Photographs Sediment Chemistry Data
Appendix B	· · · · · · · · · · · · · · · · · · ·
Appendix C	Bioassay Laboratory Results Benthic Community Study
Appendix D	Background Threshold Values
Appendix E	Dackground Threshold values

1.0 INTRODUCTION AND OBJECTIVES

This Baseline Ecological Risk Assessment (BERA) has been prepared in response to the United States Environmental Protection Agency (U.S. EPA), Region 5 December 1, 2006 Final Decision and Response to Comments, Selection of Remedial Alternative for Johnson Controls, Inc. (Former Stanley Tools Facility) Fowlerville, Michigan (Site). The Site is a former manufacturing facility located at 425 Frank Street in Fowlerville, Michigan. Prior operations conducted at the Site between 1949 and 1985 have resulted in releases of chemical contaminants into the environment on and near the Site.

This objective of the BERA is to support the implementation of the selected remedy for sediments in the Middle Fork of the Red Cedar River, which is forms the western boundary or the site. Areas of river sediments that are contaminated at levels considered unsafe for aquatic animals would be removed from the river. The degree of cleanup in the river sediments is based on the goal of protecting the animals that live part or all of their lives in the sediment (benthic organisms), which are important in the food chain of the river's ecosystem. Cleaning up sediments to protect benthic rganisms is expected to benefit the fish, birds, and mammals that inhabit or feed in the river. This will also keep the surface water clean. To meet this objective, the BERA:

- Evaluates contaminant levels in Red Cedar River sediment;
- Assesses the toxicity of sediments to benthic organisms (macroinvertebrate) through bioassays and community studies; and
- Utilizes results of the BERA and previous site investigation data to isolate the areas of sediment that will be removed and to establish site-specific cleanup goals

The cleanup levels determined by the BERA, and approved by the USEPA, will then be used to determine the degree of removal required for sediments at the Site based on the sediment data collected to date at the Site. A Final Corrective Measures Work Plan will be submitted to the USEPA for approval outlining the removal activities for sediments in the Red Cedar River and defining the long-term groundwater monitoring for the Site as required under the Final Decision.

1.1 BERA APPROACH

The methodology used to currently assess the potential ecological risks to benthic invertebrate communities in the Red Cedar River draws upon guidance set forth in the following documents:

- Framework for Ecological Risk Assessment (EPA, 1992a)
- Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments Interim Final (EPA, 1997)
- Sediment Classification Methods Compendium (EPA, 1992b)

The EPA's Framework document (1992a) defines an ecological risk assessment (ERA) as a process that evaluates the likelihood that adverse ecological effects are occurring or may occur as a result of exposure to one or more stressors. This document provides the basic process and principles to be used in an ERA, which include problem formulation, analysis (including characterization of exposure and characterization of effects), and risk characterization. The EPA (1997) has developed an eight-step ERA process for Superfund that is based on this ecological risk assessment framework. The eight 'eps are:

- Step 1: Screening Level Problem Formulation and Ecological Effects Evaluation
- Step 2: Screening Level Preliminary Exposure Estimate and Risk Calculation
- Step 3: Baseline Risk Assessment Problem Formulation
- Step 4: Study Design and Data Quality Objectives
- Step 5: Field Verification of Sampling Design
- Step 6: Site Investigation and Analysis of Exposure and Effects
- Step 7: Risk Characterization
- Step 8: Risk Management

Steps 1 and 2 in the assessment are considered the screening level ecological risk assessment (SLERA) and are intended to allow a rapid determination that a site poses no or negligible risks, or to identify which contaminants of potential concern and which exposure pathways require further evaluation. The SLERA process has been completed by Earth Tech/Weston and is described in the Technical Memorandum (ET/W, 2004). The Technical Memorandum concluded that the only potentially complete exposure pathway for which applicable criteria are exceeded is protection of aquatic life om residual contaminants in sediments and further assessment of potential risks posed by the residual contaminants to

benthic invertebrate communities was needed.

Steps 3 through 7 in the framework process are a more detailed version of the ecological risk assessment framework, and these are the steps that were followed for preparing the BERA for the Site. The following subsections present the steps performed for this BERA, following EPA Region 5 guidance (EPA, 2005a).

1.2 REPORT ORGANIZATION

This report consists of the following sections:

- Section 1: Introduction This section presents an introduction to the site, objectives, approach, and the organization of the report.
- Section 2: Site Characteristics This section presents the site description and describes site-specific field investigations conducted to support the BERA.
- Section 3: Problem Formulation This section presents the first four required elements of BERA: the chemical of concern (COC) screening analysis, an exposure pathway analysis, a conceptual exposure model, and a COC fate and transport analysis. Assessment and measurement endpoints are also selected.
- Section 4: Ecological Investigations This section presents a description of the field studies performed to support the BERA, which included sediment and surface water sampling, laboratory bioassays, tissue sampling, and community studies.
- Section 5: Characterization of Exposure and Ecological Effects This section presents the characterization of exposure, which identifies the magnitude and frequency by which target receptors are exposed to COPECs that have migrated or that may potentially migrate via complete exposure pathways to the ecological habitat at the site. This section also presents information on the toxicity of the COPECs to ecological species, including bioassays/toxicity assessment and bioaccumulation studies.
- Section 6: Risk Characterization This section presents the risk estimation and risk description which integrates the information from the problem formulation and the exposure and ecological effects characterizations to estimate the nature and extent of potential ecological risk. This section also summarizes those factors that significantly influence the risk results, evaluates their range of variability, and assesses the contribution of these factors to the under- or over-estimation of risk.
- Section 7: References.

All tables and figures presented in this report are located at the end of each respective section.

2.0 SITE BACKGROUND

2.1 SITE DESCRIPTION

The Site, located at 425 Frank Street in Fowlerville, Michigan, occupies approximately 14 acres immediately west of the intersection of Frank Street and Veterans Drive (**Figure 2-1**). The Site is bordered on the east by Veterans Drive and commercial/light industrial operations, to the north by Grand River Avenue and a construction company, to the west by the Red Cedar River, and to the south by rail lines of the CSX Railroad.

Buildings associated with the prior manufacturing operation were demolished in 1993. In 2003, an Interim Corrective Action was conducted which consisted of removal of approximately 84,000 tons of soils and ditch sediments containing constituents of concern in excess of Michigan's Part 201 cleanup criteria. In 2005, the eastern five acres of the Site was sold to American Compounding Specialties, LLC. An industrial building has been constructed on the eastern side of the Site with proposed plans for expansion in May 2008. At the time of the 2007 ecological investigation, this building was occupied by American Compounding.

Historically, surface water drainage flowed from the Site to the neighboring Red Cedar River via sheet flow or through two drainage ditches, referenced as the North Ditch and the South Ditch, located along the northern and southern borders of the Site, respectively. Forested and wetland areas had occupied the northwestern portion of the Site, As part of Corrective Measures activities in 2003, a wetlands area was constructed in this portion of the Site. In addition, a small wetlands has been constructed in the southwest portion of the Site between the new building and the river; a small swale connects this small wetlands area to the River.

2.2 SITE HISTORY

In 1949 the Utilex Manufacturing Company first developed the site for zinc die casting operations. The plant underwent several expansions and ownership transfers between 1949 and 1980. Stanley Tool purchased the plant to make hand tools in 1980. Various plating operations continued at the site until 1985. Plating operations produced a variety of liquid waste and sludges that were treated on site using multiple treatment/holding pits and/or lagoons. Several known spills and releases of waste were documented over the years that resulted in contamination of several areas of the site. Wastes were known to have been discharged onto the surface at various locations and two drainage ditches connected to the Red Cedar River adjacent to the site. The plant was closed in 1985 and remained unused until 1993 when building demolitions were

completed. Johnson Controls, Inc (JCI) assumed responsibility for site cleanup efforts with the purchase of Stanley Tools.

Several environmental activities were performed at the site between 1988 and 2002 including soil and water investigation sampling and analysis. A RCRA Facility Investigation (RFI) and Interim Measures (IMs) were implemented to address immediate threats to human health and the environment, and to define the nature and extent of contaminated media. These activities were summarized in a RFI Report prepared by URS and submitted to the U.S.EPA in October 2001. In October 2002, the U.S. EPA submitted comments on the RFI, along with a draft Administrative Order of Consent (AOC).

Through negotiations with U.S.EPA, a performance-based AOC was executed for the site in December 2002. The AOC required corrective measures be performed as necessary to control current human exposure to contamination at or from the site to within acceptable risk levels. Documentation of control was to be in the form of an Environmental Indicators Report (EIR) describing interim measures performed to meet the requirements of the AOC. In addition, JCI was required to submit a Final Corrective Measures Proposal (FCMP).

In 2003, an extensive interim Corrective Measures action was conducted by ENTACT and ET/W. This action entailed the emoval and off-Site disposal of approximately 84,000 tons of soils and sediments impacted by trichloroethane (TCE), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and various heavy metals. The contaminated soil and sediment was removed from various locations across the site and from the North Ditch and South Ditch which feed in to the adjacent Red Cedar River.

The FCMP (Final Corrective Measures Proposal, Former Stanley Tool Works, Fowlerville, Michigan, Earth Tech/Weston, February, 2004) included recommendations for final corrective measures to be implemented and also discussed corrective measures taken at the site since the date of the AOC. The FCMP included Appendix D - Technical Memorandum: Preliminary Sediment Cleanup Criteria and Data Evaluation, Red Cedar River, Former Stanley Tool (ET/W, 2004). The Technical Memorandum included a conceptual site model identifying relevant exposure pathways, summary and evaluation of Red Cedar River sediment investigations completed in 1994 and 2000 as part of the RCRA Facility Investigation, results of investigations completed by Earth Tech/Weston in 2003, and provided conclusions and recommendations for management of sediment in the Red Cedar River.

In December 2006, USEPA issued a RCRA Final Decision and Response to Comments that specified Selected Remedies for the Site. The Final Decision required removal of sediments that pose a potential risk to aquatic life in order to render the exposure pathways incomplete. The Final Decision indicated that an evaluation of Red Cedar River sediments should be done to further evaluate the level of toxicity to those animals that live all or part of their lives in the sediment (benthic

organisms) in order to establish site-specific cleanup goals that would be used to identify those areas of sediment that need to be removed.

The Final Decision reflects the recommendations presented within the *Technical Memorandum* (ET/W, 2004) for additional ecological testing to ensure that contaminants were not present in the stream at levels deemed harmful to aquatic life, and to define the areas with exceedences falling between preliminary screening criteria, specifically the Threshold Effect Concentrations (TECs), defined as concentrations below which adverse effects are not expected to occur, and Probable Effect Concentrations (PECs), defined as concentrations above which adverse effects are expected to occur.

Under the December 2006 Final Decision, the Agency acknowledges that the source of any future contamination entering the Red Cedar River has been removed through the removal of Site soils and the North and South Ditch sediments as part of the Interim Corrective Measures action. In addition, the migration of residual contaminants in groundwater is considered to have stabilized and is under control. Discharge of residual contaminants into the Red Cedar River were found to be currently acceptable as demonstrated by groundwater-surface water mixing calculations and a comparison of the calculated surface water concentration to applicable surface water protection criteria per the CA 750 Migration of Contaminated Groundwater Environmental Indicator (EI) Determination. However, the Agency is requiring that sediments with contaminants at levels considered unsafe for aquatic animals would be removed from the river, via the application of site-specific sediment clean-up goals that are established by this BERA.

2.3 ECOLOGICAL DESCRIPTION

The area addressed by the ecological field investigation (Study Area) encompassed an approximate 4,400 foot stretch of the Middle Branch of the Red Cedar River near Fowlerville, Michigan extending from Interstate 96 northward to approximately 50 feet downstream of the northwest corner of the Site.

The Red Cedar River is classified by the Michigan Department of Natural Resources as a small warm water stream, meaning it is capable of supporting warm water fish (ET/W, 2004). The River is too shallow to be navigated safely by most water craft and not attractive for swimming or other recreational activities. There is no indication that it supports a significant sports fishery. The River is not used as a potable water supply.

The River borders the western edge of the Site for a total of approximately 725 stream feet, extending from the CSX railroad bridge crossing downstream in a northwesterly direction to a point approximately 50 feet downstream from the

confluence with the North Ditch. This section of the River consisted of a shallow, channelized run averaging 26.6 feet in width and 21.8 inches (1.8 feet) in deptha at the time of sampling. The bottom sediments consisted largely of silty sands with varying amounts of gravel. A thin surficial layer of plant detritus, organic material and/or silt was generally present. The riparian borders were characterized by a narrow band of exposed soils/sediments ranging from gentle flats to severely sloping edges. No emergent vegetation was present. No riffle and no backwater areas were present. Some overhanging vegetation was present in localized areas of the bank. On the east side of the river, the bordering habitat was largely grasses and forbs, with some small saplings of willow (Salix), poplar (Populus) and green ash (Fraxinus pennsylvanica). Large silver maples (Acer saccharinum) were present near the northern end of the stretch around the confluence of the North Ditch. The west side of the river was bordered by a mature deciduous, multi-storied, bottomland forest dominated by silver maple, with some box elder maple (Acer negundo), green ash, birch (Betula) and elms (Ulmus).

The section of the river extending from Interstate 96 downstream to the CSX Railroad bridge was selected for the collection of reference samples. This section of the river was a shallow, somewhat meandering run that flows through a fairly extensive mature, multi-storied, deciduous bottomland forest, dominated by silver maple, with green ash, elm, and hop hornbeam (*Ostrya virginiana*). The width and depth of the river at the two reference sample locations averaged 22.75 eet wide and 13 inches (1.1 foot) deep, respectively, at the time of sampling. An open water pond, marshlands, and with some bordering swampland were interspersed within the forested area east of this stretch of the river.

The bottom sediments in this stretch of river consist primarily of largely silty sands and gravel, although a localized pocket of fine sandy silts was noted. Again, a thin layer of detritus and organics were generally present. The river edges borders were characterized by a generally narrow band of exposed soils/sediments ranging from gentle flats to severely sloping edges. Typically, no emergent vegetation or backwater areas were present. A few shallow riffles areas were observed in this stretch of the river. There was an extensive stretch of shallow riffles with deeper pools in a westerly flowing stretch of the river just north of the Interstate (see Exhibit 1). This riffle area was dominated by floating eel grass (Valesnaria), with some emergent arrowhead (Sagittaria) (Appendix A, photograph 30).

Incidental observations of wildlife in the Study Area included a large number of frogs, both in the riparian borders of the river throughout the study area, and the pond/marsh/ swamp complex within the bottomland forest east of the river. These included wood frogs (*Rana sylvatica*) and leopard frogs (*Rana pipiens*) (Appendix A, photographs 36 and 37). During

a Calculated by averaging the three depths measured per station, for all six stations in the run.

the macroinvertabrate community surveys, a total of four specimens of Johnny darter (*Etheostoma nigrum*) were inadvertently caught and released; one each at community survey stations 001 and 002, and two specimens at station 006b. A single specimen of common carp (*Cyprinus carpio*) was observed at Station 008. Near station 003, two small fingerling bass (*Micropterus*) and a few small sunfish (*Lepomis*) were observed. A belted kingfisher (*Megaceryle alcyon*) was observed along the river near station 007. Tracks of raccoon (*Procyon lotor*) and white tailed deer (*Odocoileus viginianus*) were observed along the edges of the river throughout the study area.

Refer to Subsection 4.4.1 for a description of the community survey locations.

3.0 PROBLEM FORMULATION

Step 3, problem formulation, establishes the goals, breadth, and focus of the BERA. The problem formulation for this site involves identifying whether or not residual site contaminants have migrated or may migrate from the site to receptors in the Red Cedar River. The problem formulation step, and specifically the following tasks, have been completed on a preliminary basis and are included in the FCMP and the Technical Memorandum (ET/W, 2004):

- The environmental setting of the site has been characterized. This has provided a physical and biological description of the site and information on the areas on or adjacent to the site that contain ecological receptors and habitat.
- Complete exposure pathways, which are the paths a constituent takes from its source into the environment and ultimately to a receptor have been identified. As described in the *Technical Memorandum* (ET/W, 2004), concentrations of certain heavy metals and PAHs in the Red Cedar River sediment were found to exceed Probable Effect Concentrations (PEC) sediment screening levels. The PECs are from *Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems* by D. McDonald, C.G Ingersoll and T.A. Berger (Archives of Environmental Contamination and Toxicology, 39, 20-31 (2000)). Benthic macroinvertebrates can potentially be exposed through direct contact and dietary ingestion of site contaminants in sediment.

Based on the preliminary problem formulation, the goal of the BERA can be stated as the protection of the survival, growth, and reproduction of benthic invertebrates. The assessment endpoint, which is defined as explicit expressions of the environmental value that is to be protected (EPA, 1992a), is the survival, growth and reproduction of benthic invertebrate communities.

3.1 CONTAMINANT FATE AND TRANSPORT AND ECOTOXICITY

As described, certain heavy metals, specifically, arsenic, cadmium, chromium, copper, lead, nickel zinc, as well as PCBs, and PAHs, have been detected in sediments collected from the Red Cedar River at concentrations exceeding consensus based sediment quality guidelines (MacDonald et al. 2000). The following paragraphs provide a brief summary of the fate and transport properties of the contaminants of concern at this site and the ecotoxicity of these contaminants. These website Agency for **ATSDR** profiles the brief synopsis the toxicity on profiles are (http://www.atsdr.cdc.gov/toxpro2.html).

Arsenic is a naturally occurring element widely distributed in the environment. Arsenic in animals and plants combines with carbon and hydrogen to form organic arsenic compounds. Arsenic cannot be destroyed in the environment and it can

only change in oxidation state. Fish and shellfish can accumulate arsenic, but the arsenic in fish is mostly in a form that is not harmful to the fish.

Cadmium is a natural element in the earth's crust. It is usually found as a mineral combined with other elements (e.g., with oxygen as cadmium oxide, etc.). It binds strongly to soil particles. It does not breakdown in the environment, but can change forms. Some cadmium dissolves in water. Fish, plants, and animals take up cadmium in the environment. Cadmium stays in the body for a very long time and can build up from many years of exposure to low levels.

Chromium is a naturally occurring element found in rocks, animals, plants, soil, and in volcanic dust and gases. Chromium is present in the environment in several different oxidation states; the most common forms are chromium III and VI. Chromium III is also considered to be an essential nutrient. Chromium has a strong affinity to soil and only a small amount dissolves in water. Fish do not appreciably accumulate chromium in their bodies from water.

Copper and its compounds are naturally present in the earth's crust. In aerobic sediments, copper is bound mainly to organics (humic substances) and iron oxides. However, in some cases, copper is predominantly associated with carbonates. In anaerobic sediments, Cu(II) will be reduced to Cu(I) and insoluble cuprous salts will be formed. It is predominantly in the Cu(II) state. Most of it is complexed or tightly bound to organic matter. Little is present in the free (hydrated) or readily exchangeable form. The combined processes of complexation, adsorption, and precipitation control the level of free Cu(II). The chemical conditions in most natural water are such that, even at relatively high copper concentrations, these processes will reduce the free Cu(II) concentration to extremely low values. Copper shows a low potential for bioconcentration in fish There are limited data suggesting that there is little biomagnification of copper in the aquatic food, with biomagnification ratios less than one.

Lead is a naturally occurring metal which does not break down, but organic lead compounds are change composition due to sunlight, air, and water. Lead has a high affinity to soil and sediment particles. Plants and animals may bioconcentrate lead, but lead is not biomagnified in the aquatic or terrestrial food chain.

Nickel and its compounds are naturally present in the Earth's crust, and releases to the atmosphere occur from natural discharges such as windblown dust and volcanic eruptions, as well as from anthropogenic activities. Surface water contains low nickel levels. Sediment is an important sink for nickel in water. Adsorption of nickel onto suspended particles in water is one of the main removal mechanisms of nickel from the water column. The adsorption of nickel on water-borne particulate matter is in competition with adsorption onto dissolved organic matter, which limits the amount of nickel that can be removed from the water column through the settling of suspended particles. Much of the nickel released into waterways as runoff is associated with particulate matter; it is transported and settles out in areas of active sedimentation such as the mouth of a river. It has been reported that nickel is not accumulated in significant amounts by aquatic organisms. There was no evidence that nickel biomagnifies in aquatic food webs and, in fact, there is evidence to indicate that the nickel concentrations in organisms decrease with increasing trophic level.

Zinc is an element commonly found in the Earth's crust. Zinc is capable of forming complexes with a variety of organic and inorganic groups (ligands). In the aquatic environment, zinc partitions to sediments or suspended solids in surface waters through sorption onto hydrous iron and manganese oxides, clay minerals, and organic material. Biological activity can affect the mobility of zinc in the aquatic environment, although the biota contains relatively little zinc compared to the sediments. Zinc bioconcentrates moderately in aquatic organisms; bioconcentration is higher in crustaceans and bivalve species than in fish. Zinc does not concentrate in plants, and it does not biomagnify through terrestrial food chains.

PCBs are a group of synthetic organic chemicals that can cause a number of different harmful effects. There are no known natural sources of PCBs in the environment. PCBs enter the environment as mixtures containing a variety of individual

chlorinated biphenyl components, known as congeners, as well as impurities. Once in the environment, PCBs do not readily break down and therefore may remain for very long periods of time. They can easily cycle between air, water, and soil. PCBs are taken up into the bodies of small organisms and fish in water. They are also taken up by other animals that eat these aquatic animals as food. PCBs especially accumulate in fish and marine mammals (such as seals and whales) reaching levels that may be many thousands of times higher than in water. Greater bioaccumulation will occur in the fatty tissues (lipids) than in the muscle or whole body of aquatic organisms. Thus, organisms with higher lipid concentrations will accumulate a greater burden of PCBs via tropic transfer. PCB levels are highest in animals high up in the food chain.

PAHs are a group of chemicals that are formed during the incomplete burning of coal, oil, gas, wood, garbage, or other organic substances, such as tobacco and charbroiled meat. There are more than 100 different PAHs. PAHs generally occur as complex mixtures (for example, as part of combustion products such as soot), not as single compounds. The movement of PAHs in the environment depends on properties such as how easily they dissolve in water, and how easily they evaporate into the air. Sorption of PAHs to soil and sediments increases with increasing organic carbon content and with increasing surface area of the sorbent particles. In surface water, PAHs can volatilize, photolyze, oxidize, biodegrade, bind to suspended particles or sediments, or accumulate in aquatic organisms (with bioconcentration factors often in the 10-10,000 range). In sediments, PAHs can biodegrade or accumulate in aquatic organisms. In general, bioconcentration was greater for the higher molecular weight compounds than for the lower molecular weight compounds. Although fish and most crustaceans evaluated are able to metabolize PAHs, some mollusks and other aquatic invertebrates are unable to metabolize PAHs efficiently. For example, the extent of benzo[a]pyrene metabolism by aquatic organisms has been ranked as follows: fish > shrimp > amphipod crustaceans > clams. Half-lives for elimination of PAHs in fish ranged from >2 days to 9 days.

.2 COMPLETE EXPOSURE PATHWAYS AND CONCEPTUAL SITE MODEL

Complete exposure pathways, which are the paths a constituent takes from its source into the environment and ultimately to a receptor have been identified and are presented in the ecological Conceptual Site Model (CSM) provided as **Figure 3-2**.

Based on existing data and conditions at the Facility, the BERA focuses on benthic macroinvertebrates within that portion of the Red Cedar River adjacent to the Site. Benthic invertebrates can be significantly exposed through direct contact and dietary ingestion of heavy metals, PAHs and PCBs in sediment, sediment pore water, and surface water. As indicated in Subsection 2.2, there is no indication that contaminants continue to migrate from Site into the River via any migration pathway, including via surface water or groundwater transport.

3.3 ASSESSMENT AND MEASUREMENT ENDPOINTS

Assessment endpoints, which are defined as explicit expressions of the environmental value that is to be protected (EPA, 1992a) for this BERA are summarized in **Table 3-1**. Elevated levels of heavy metals, PAHs and PCBs in sediment are known to be toxic to benthic organisms; thus, survival of benthic invertebrate communities and toxicity to the benthic

invertebrate community are proposed as assessment endpoints for this Site.

A Measurement Endpoint is "a measurable ecological characteristic that is related to the valued characteristic chosen as the assessment endpoint and is a measure of biological effects (e.g., death, reproduction, growth) of particular species, and they can include measures of exposure as well as measures of effects" (EPA, 1997). Measurement endpoints should include risks to, and be representative of, all of the species, populations, or groups included in the assessment endpoint(s) that is/are being investigated in terms of those particular measurement endpoints. The measurement endpoints (as measures of exposure) and the assessment objectives being answered in this BERA are summarized in **Table 3-1**. Receptor(s) of Interest (ROI) are the indicator species for evaluation in the BERA. Based on existing data and known site conditions, the ROI are benthic macroinvertebrates.

Table 3-1 Assessment and Measurement Endpoints Former Stanley Tool Works Site, Fowlerville, Michigan

Feeding Guild	Assessment Endpoint	Endpoint Objective	Surrogate Species or Community	Measures of Exposure
Benthic organisms	Benthic invertebrates are an important food source for many higher trophic level predators. They also provide an important role as decomposers/detritivores in nutrient cycling. Assessment endpoint = preservation of the productivity (taxa richness and abundance) of benthic organisms.	Are COPCs in sediment adversely affecting benthic communities? Are COPCs toxic to benthic organisms? Have COPCs impacted the benthic macroinvertebrate community?	Benthic organisms	Comparison of sediment concentrations with toxicity-based screening values. Hyallela azteca 28-day bioassay. Benthic community structure and function assessment and reference area comparison.

4.0 ECOLOGICAL FIELD INVESTIGATION

In Step 4 the measurement endpoints are selected. A measurement endpoint is defined as "a measurable ecological characteristic that is related to the valued characteristic chosen as the assessment endpoint and is a measure of biological effects (e.g., death, reproduction, growth) of a particular species, and they can include measures of exposure as well as measures of effects" (EPA, 1997). Measurement endpoints should include risks to, and be representative of, all of the species, populations, or groups included in the assessment endpoint(s) that is/are being investigated in terms of those particular measurement endpoints. The measurement endpoints (and measures of exposure) addressed in this BERA are:

- 1) Comparison to sediment concentrations of site constituents to sediment toxicity benchmarks;
- 2) Evaluation of site-specific toxicity tests; and
- 3) Evaluation of site-specific community surveys.

Step 4 also entails the production of a Work Plan (WP) and Field Sampling and Analysis Plan (FSAP) to identify the investigative tasks needed to complete the study of risks to ecological resources (i.e., to collect the measures of exposure and measures of effect data). The purpose of the WP is to document the decisions and evaluations made during the previous steps and to identify additional investigative tasks needed to complete the study of risks to ecological resources. The BERA Work Plan (Entact, 2007) was approved by U.S EPA in July 2007.

The BERA WP utilized the Triad Approach, as defined in the Sediment Classification Methods Compendium (EPA, 1992b), to further investigate risks, integrating both chemical and biological data. The Triad Approach incorporates measures of sediment chemistry (measures chemical contamination), sediment bioassays (measures toxicity) and benthic communities (measures change in benthic community structure). The data collected as part of the Triad Approach included the following:

- Evaluation of existing sediment data and generation of new sediment data from sediment samples collected from the Red Cedar River adjacent to the site and from the reference areas;
- Bioassay analyses or toxicity tests conducted on sediment samples collected from the Red Cedar River adjacent to the site and from the reference areas; and
- Community evaluation of benthic macroinvertebrates conducted in the field and on samples collected from the Red Cedar River adjacent to the site and from the reference areas.

The following sections provide further detail on the ecological investigation at the site.

4.1 SEDIMENT CHEMISTRY

Based on results of previous investigations and sampling conducted by Earth Tech/Weston in 2003, eight additional sediment samples were collected for chemical analyses. The sample locations included one sample from each of six investigative locations (E2, RC-3/3, A1, C1, RC-9/1 and J2) (6 samples total) which, based on historical data, provide a range of heavy metals and PAH concentrations. These six investigative samples were located in the Red Cedar River adjacent to and/or immediately downstream of the Site. The sample locations are shown on **Figure 4-1**.

Two reference samples were collected in the Red Cedar River in the upstream stretch of the River between Interstate I-96 and Garden Lane. The six investigative samples and one of the reference samples were placed at prior locations of selected sediment samples collected by Earth Tech/Weston in 2003. The second reference sample was placed at a previously un-sampled location in the River. All data collected from the site is compared to a reference area, which is defined as a comparatively uncontaminated site used for comparison to contaminated sites in environmental monitoring rudies. The reference area can be the least impacted or an un-impacted area of the site or a nearby site that is ecologically similar, but not affected by the contaminants at the site under investigation. Reference areas for the site were selected that as closely as possible mirror the characteristics of the stretch of Red Cedar River being investigated. Characteristics matched with the investigative surface water features for deciding on reference areas included habitat, species potentially present, sediment characteristics, surface water presence and water depth.

Each sediment sample location was designated in the numerical order in which it was collected; with 001 being the sample point furthest downstream, and the 008 being the sample point furthest upstream. For the seven samples that were located at prior sample locations, the prior sample identifier was used as a prefix to the numerical designation. **Table 4-1** summarizes the sediment samples collected during this effort.

With the exception of sample SD-007, each sample location was located and staked based upon survey coordinates associated with the prior Earth Tech/Weston sampling. Boss Engineering of Howell, Michigan was retained by ENTACT to locate and stake these positions using a combination of global positioning system (GPS) and traditional surveying methodology. Coordinates for the prior Earth Tech/Weston samples were provided electronically by Weston to ENTACT. SD-007 was placed at a previously un-sampled location in the River. Target GPS coordinates for locating this

sample were developed using a aerial photograph of the Site. These target coordinates were then used in the field for placing this sample.

At each sample location, sediment material was retrieved form the upper 1 foot of sediments utilizing a decontaminated stainless steel bucket auger. The unconsolidated sediment area is approximately 2 feet deep in most areas and is underlain by a visually distinct and dense sand and silt layer. However, the ET/W tabulated data shows that most samples with PEC or PEC quotient exceedances were collected from the upper 12 inches. This material was placed into a decontaminated stainless steel bowl, homogenized, and then transferred directly to laboratory-supplied, 8-ounce glass jars with Teflon-lined plastic lids. At sediment sample location SD-J2-001, a field duplicate sample was collected by splitting the homogenized sample between two, 8-ounce jars and randomly labeling one as the field duplicate (SD-J2-001-FD).

Each sample container was immediately labeled with the sample location, time and date. The sample containers were placed in an iced cooler upon return to the sampler's vehicles. The samples were subsequently shipped under chain-of-custody via common to TestAmerica (Buffalo Grove, Illinois) for chemical analyses.

rugers, bowls and other non-disposable sampling gear was decontaminated by initially rinsing the equipment in river water and hand scrubbing with disposable paper toweling as necessary to remove visible sediment material, followed by a soapy water (Alconox) spray, followed by a distilled water rinse. Samplers wore dedicated, disposable gloves during sampling activities.

All sediment chemistry samples (eight investigative and one field duplicate) were analyzed for the following chemical constituents:

- Total concentrations of the following heavy metals: arsenic, cadmium, chromium, copper, nickel, lead and zinc via USEPA Methods 6000/7000 series
- PAHs via USEPA Method 8310.
- PCBs via USEPA Method 8082.

In addition, four of the chemistry samples (three investigative and one field duplicate) were also analyzed for total organic carbon (TOC) via Method SW846 9060M. Sample locations were SD-J2-001, SD-J2-001-FD, SE/RC 9/1-002, and SD-A1-006.

Samples were also collected at three locations, SE/RC 9/1-002, SE/RE 3/3-004, and SD-SE/RC 13/1-008, for geotechnical analyses of grain size distribution. At each location, sediment material from the upper foot of the river bed was retrieved and placed into re-sealable, food-grade gallon sized plastic bags. The bags were pre-labeled with the sample location, date and time. Each sample bag was double bagged, and shipped under chain-of-custody in a sample cooler to Wang Engineering (Lombard, Illinois) for analyses.

4.2 BIOASSAY

The bioavailability and harmful effects of site contaminants were tested directly with toxicity tests (bioassays), which measure the effects of a particular contaminant on a particular species.

Sediment bioassays were performed using a chronic study. A 28-day bioassay with *Hyallela azteca* (*H. azteca*) was used to evaluate for acute toxicity and to evaluate for chronic effects. Data from the chronic bioassay is used to determine whether heavy metals, PAHs and PCBs in sediments are directly toxic to benthic invertebrates and this data can also be used for developing site-specific cleanup goals. The *H. azteca* bioassay generally followed the EPA (2000) Test Method 00.4., *Test for Measuring the Effects of Sediment-associated Contaminants on Survival, Growth, and Reproduction.* The procedure for days 29 through 42 of Test Method 100.4 to evaluate reproduction were not completed. The endpoints typically monitored in sediment toxicity tests include survival and growth, which were compared to both the laboratory control and the reference area.

Whole sediment samples were collected at six investigative locations, adjacent to the site as well as from two locations in the upstream reference area. All samples were collected from depositional areas where standing water is present. All bioassay samples were co-located with and collected in conjunction with collection of the chemistry samples described in Subsection 4.1.1. Six investigative the samples were located in the Red Cedar River adjacent to and/or immediately downstream of the Site. Two reference samples were collected in the Red Cedar River in the upstream stretch of the River between Interstate I-96 and Garden Lane. The same sample nomenclature used for the sediment chemistry samples was sued for the bioassay samples.

Sediment material for the bioassay was taken from the homogenized sediment material collected as described in Subsection 4.1. The material was placed in gallon-sized, re-sealable, food-grade plastic bags. Each sample bag was pre-labeled with the sample location, time and date. The sample bags were placed in an iced cooler upon return to the sampler's vehicles. The sample bags were triple bagged and subsequently shipped under chain-of-custody via common

carrier to Coastal Bioanalysts (Gloucester, Virginia) which conducted the bioassay testing.

4.3 COMMUNITY SURVEY

Population/community evaluations, or biological field surveys, were performed in the same locations where the bulk sediment samples are collected to identify the benthic macro-invertebrate community. Several variables in combination are effective in characterizing benthic community structure for the Triad Approach (EPA, 1992b): numbers of taxa, numerical dominance, total abundance, and percentage composition of major taxonomic groups (e.g., oligochaetes, chironomids, and other major insect groups).

As described in the BERA Work Plan, a community survey of benthic macro-invertebrates was conducted. This effort was conducted by Integrated Lakes Management, Inc. (ILM) of Gurnee, Illinois, with field assistance by ENTACT. The survey entailed collecting representative samples of macro-invertebrate fauna from six investigative and two reference locations or survey stations within the Red Cedar River. The locations of the survey stations were generally co-located with a few feet of the sediment sample locations described in Subsections 4.1.1 and 4.1.2, and were identified in numerical order starting with the furthest downstream location. Thus, station 01 was located near sediment sample SD-J2-001, station 02 near SE/RC 9/1-002, and so forth. The specific locations of each station were selected so that each station represented similar stream habitat. The selected habitat consisted of stream runs with with no riffles or backwater areas, no large rocks or debris, no submerged or emergent aquatics, and with riparian borders consisting of a narrow band of exposed soils/sediments ranging from gentle flats to severely sloping edges. While most of the stations were located within 20 to 30 feet of the corresponding sediment sample location, reference station 08 was actually located approximately 600 stream-feet downstream of sediment sample SE/RC 13/1-008. At this sediment sample location, which was collected approximately (10) feet downstream of the north edge of the culvert extending beneath Interstate 96, a large amount of rip-rap had been placed along the eastern bank; this rip-rap extended downstream past the 90-degree turn to the west that the river takes just downstream of where sediment sample was collected. As noted in Subsection 2.4, the westerly flowing section of the river just past this turn consisted of a riffle and deep pool areas, the former populated by an extensive colony of eel grass and other submerged//emergent aquatics. The first section of river of comparable habitat to the other stations was found after a second river bend where the river resumes a more northerly course.

At each sample station, a total of three samples, one mid-stream, and two approximately midway between the mid-point and either bank were collected. Each sample was collected using a 1-square foot Surber net. Once placed, shallow

sediments (extending to approximately 3 centimeters in depth) within the nets frame were disturbed by hand action. Any large twigs or rocks encountered in the sample frame were rubbed to dislodge attached organisms. The contents of net were then washed to remove fines from the sample mass. The sample was then deposited into a white enamel pan or bowl. An initial examination of the sample was made and any larger macro-fauna removed. The sample was then placed into a kitchen strainer held within a #35 standard soil sieve. The sample was then rinsed with copious amounts of river water. The larger material held by the kitchen strainer was then placed into a white colored pan bowl. The finer material held by the soil sieve was placed into a second white pan or bowl. Each sub-sample was thoroughly examined and any macro-fauna removed and preserved. After examination, the coarse material was discarded. The fine material was placed into a second jar and preserved, for additional examination in the laboratory. The specimens collected were placed into sample containers dedicated for each station, resulting in a composite sample of the three Surber net samples collected at each station.

Casual observations of biota made during the community survey revealed larval mayfly and caddisflies on concrete block debris located between community stations 04 and 05. ILM subsequently collected and identified macro-invertebrate samples from this debris, and included the results of this collection effort into their final report (refer to Subsection 4.4.2). In fowever, this data are not part of the comparative community survey and is strictly observational in nature.

At each station, measurements of the river depth and width were taken. Also, samples were collected for temperature, and field screening of alkalinity, pH, dissolved oxygen and chlorides using Hach® test kits at Stations 02 and 07. A summary of field measurements of the river collected during the community survey are presented in **Table 4-2.** A summary of wet chemistry field analyses conducted by ILM at Stations 02 and 07 are presented in **Table 4-3**.

TABLE 4-1 SUMMARY OF SEDIMENT SAMPLE LOCATIONS

Sample Designation	Sample Location
SD-J2-001	Approximately 50 stream-feet downstream of North Ditch confluence
SE/RC 9/1-002	Approximately 5 stream-feet downstream the North Ditch confluence
SD-E2-003	Approximately 440 stream-feet upstream of North Ditch confluence.
SE/RE 3/3-004	Approximately 480 stream-feet upstream of North Ditch confluence.
SD-C1-005	Approximately 110 stream-feet downstream of CSX Rail Bridge
SD-A1-006	Approximately 60 stream-feet downstream of CSX Rail Bridge.
SD-007	Approximately 1,700 stream-feet downstream of sample point SD-SE/RC 13/1-008.
SD-SE/RC 13/1-008	Approximately 15 stream-feet downstream of north edge of culvert beneath Interstate I-96.

TABLE 4-2 SUMMARY OF RIVER MEASUREMENTS

Station	River Width	River Depth (feet)			
	(feet)	A (east)	B (mid-stream)	C (west)	
01	28.5	0.9	1.2	1.5	
02	23	1.2	1.8	1.8	
03	24	2.4	2.2	1.7	
04	26	1.8	1.7	1.2	
05	26	1.3	2.3	2.1	
06	27	2.2	3.7	2.0	
07	25.5	0.7	0.8	0.8	
08	20	1.3	1.6	1.3	

TABLE 4-3 SUMMARY OF FIELD WATER CHEMISTRY PARAMETERS

Station	Temperature (Celsius)	Alkalinity (mg/L as CaCO ₃)	p₩	Dissolved Oxygen (mg/L)	Chlorides (mg/L Cl')
02	19	320	8.0	7.0	100
07	20	360	8.0	6.0	80

5.0 CHARACTERIZATION OF EXPOSURE AND EFFECTS

The extent of ecological exposure and effects are characterized in this section. Exposure is the situation where a contaminant (stressor) is present at the same place and time as, or is in contact with, a plant or animal. Both an exposure-response analysis, which describes the relationship between size, frequency, or duration of a chemical contaminant and the size of the response, and evidence of causality, which provides evidence for this relationship from multiple sources and not just the exposure-response analysis, will be used in determining how likely it is that the contaminant found in the Red Cedar River sediments actually cause the effects on the measurement and assessment endpoints.

5.1 CHARACTERIZATION OF EXPOSURE (DATA ANALYSIS)

The results of the ecological field investigations are provided in this subsection. For the sediment chemistry, EPA Region 5 RCRA Corrective Action ecological screening levels (ESLs), available at http://www.epa.gov/Region5/rcraca/edql.htm, are first used to determine chemicals of potential ecological concern (COPECs) in these media. The ESLs are Region 5 media-specific values for Resource Conservation and Recovery Act Appendix IX hazardous constituents. ESLs are initial creening levels with which the sediments concentrations were compared to helping to focus the investigation on those areas and chemicals that are most likely to pose an unacceptable risk to the environment. ESLs alone are not intended to serve as cleanup levels. The Region 5 RCRA ESL is equivalent to the Consensus based threshold effect concentrations (TEC) as presented in MacDonald *et al.* (2000).

5.1.1 Sediment Chemistry

Sediments encountered at each sampling location consisted largely of silty sands and gravel with some localized fine sandy silts. A thin layer of detritus and organics were generally present. At sample location SD-E2-003, the sediments possessed a distinct oily odor, and an oily sheen was noted atop the water after these sediments had been disturbed (Appendix A, photograph 13).

The results of the chemical analyses of the sediment samples are presented in **Tables 5-1** for sediment. Historic sediment data is provided in **Appendix B**. Sediments were analyzed for metals (i.e., arsenic, cadmium, chromium, copper, lead, nickel, and zinc), PCBs (as Aroclors), and PAHs (priority pollutants). Of the organic compounds, PCBs and cadmium were not detected in sediment. Of the PAHs, only benzo(a)pyrene was detected in four samples at concentrations below the ESL. Arsenic, chromium, copper, lead, nickel, and/or zinc exceeded the ESL in at least one sample at four locations

(SE/RC-9/1-002, SD-E2-003, SD-C1-005, and SD-A1-006.

5.1.2 Bioassays

Benthic organisms were exposed to sediment in order to evaluate the effects of contamination on the survival and growth of these organisms. The results of the benthic bioassays are summarized in **Table 5-2.** The complete bioassay report is provided in **Appendix C.** The laboratory negative control survival was 94%. One sample location (SD-E2-003) had no survival; survival for all other investigative locations (91% at SD-A1-006, 96% at SE/RE 3/3-004, 91% at SE/RC 9/1-002, 79% at SD-C1-005 and 95% at SD-J2-001) and the reference locations (95% in SE/SRC 12/1-008, and 94% in SD-007) was not significantly different from the laboratory control survival rate of 94%. Results from sample SD-C1-005 showed a markedly lower survival rate of 79%, though the difference was not significant. Results from sample SD-E2-003 showed a zero percent survival rate. Growth at SD-C1-005 and reference site SE/RC-13/1-008 was significantly different (p=0.005) from reference site SD-007. Growth in all treatments was significantly lower than in the laboratory control group.

5.1.3 Community Studies

The ecological investigation included collection of aquatic macroinvertebrates for analysis of community health. The complete macroinvertebrate a community study report is provided in **Appendix D**.

Several variables in combination are effective in characterizing benthic community structure (EPA, 1992b): numbers of taxa, numerical dominance, total abundance, and percentage composition of major taxonomic groups (e.g., oligochaetes, chironomids, and other major insect groups). Aquatic macroinvertebrates for community assessment analysis were generally identified to the family level in the field. Twenty-one taxa were identified for the area. The results of the benthic community study performed by ILM are summarized in **Tables 5-3 and 5-4**.

5.2 CHARACTERIZATION OF EFFECTS

Sometimes more than one line of evidence is needed to reasonably show that contaminants from a Site are likely to cause adverse effects on the assessment endpoint(s). The BERA Work Plan identified the triad approach (i.e., toxicity test, benthic invertebrate community survey, and sediment chemistry) for collecting data for the BERA to assess the potential for adverse ecological effects on the aquatic ecosystem present in the Red Cedar River in the vicinity of the site.

5.2.1 Sediment Chemistry

One line of evidence used to assess impacts to transient aquatic receptors is the comparison of chemical data to sediment guidelines. To predict the toxicity for mixtures of various contaminants in sediments, mean probable effect concentration quotients (PEC-Q) were determined for each sample location. Consensus-based sediment quality guidelines (SQGs) (MacDonald et al. 2000) have been developed that represent the geometric mean of published SQGs from a variety of sources. These SQGs are called PECs and TECs. PECs are intended to dentify contaminant concentrations above which harmful effects on sediment-dwelling organisms are expected. to occur more often than not. TECs are intended to identify contaminant concentrations below which harmful effects on sediment-dwelling organisms are not expected. Mean PEC-Q for mixtures of metals) were determined using methods adopted from Ingersoll et al. (2000, 2001). The mean PEC-Q is a calculated value which provides a method for evaluating the significance of the mixture of chemicals (with PECs) in a sample instead of a chemical by chemical evaluation which is a more restrictive screening evaluation and addresses the EPA's concern of evaluating cumulative effects. Based on existing databases, the reliability to predict toxicity is greatest for the metals arsenic, cadmium, chromium, copper, lead, nickel, and zinc. In the case of metals, a mean PEC-Q_{metals} is calculated by summing the PEC-Q for the individual metals and dividing by the total number of metals. Ingersoll et al. (2000) observed an overall increase in the incidence of toxicity with an increase in the mean quotients in toxicity tests, and that there is a consistent increase in the toxicity at a mean quotient of > 0.5. The overall incidence of toxicity was greater in long-term tests (28 days) using the amphipod Hyalella azteca compared to short-term tests.

5.2.2 Bioassays

Toxicity tests or bioassays are used to directly evaluate the bioavailability and toxicity of sediment contaminants to selected test organisms (EPA, 1997). Sediments having ≤24% mortality are considered nontoxic as defined by Berry et al. (1996, and cited in EPA 2005b). As described in EPA (2000), the performance of bioassay test organisms in the negative control is used to judge the acceptability of the test, and both a negative control and reference sediment were used to evaluate performance of the organisms in the investigative sediments. Testing of a reference sediment provides a site-specific basis for evaluating toxicity while the negative control is used as a measure of test acceptability, evidence of test organism health, and a basis for interpreting data obtained from the test sediments. If the organisms in the negative control do not meet performance criteria, the results of investigative sediments are considered questionable because it suggests that adverse factors affected the test organisms.

5.2.4 Community Studies

Population/community evaluations, or biological field surveys, can be useful for evaluating the potential for adverse cological effects from both contaminants that are harmful to organisms through direct exposure to the contaminated medium (sediment) and contaminants that bioaccumulate in food chains.

The benthic macroinvertebrate family-level data collected from the Red Cedar River site is useful to assess the benthic communities of the investigated locations. The taxa lists were developed based on qualitative sampling, with a frequency of occurrence estimated for the sampled taxa at the time of collection. This information is appropriate for developing qualitative assessments of the benthic communities. ILM developed Macroinvertebrate Biotic Index (MBI) values for the sampled locations associated with the site as a measure of organic, oxygen-depriving pollution in stream environments. The MBI is a refinement of the Hilsenhoff Biotic Index (HBI, Hilsenhoff, 1982, 1987, 1988), which has been refined for use on the taxonomic family level. This procedure, developed by Hilsenhoff (1982, 1988) for Wisconsin streams, is a semi-quantitative assessment of organic, oxygen-depleting pollution of flowing waters. The HBI system assigns a tolerance value (of low oxygen and high organic waste levels) to aquatic arthropod species found in flowing waters. A higher HBI value, on a scale of 0 to 10, indicates a higher tolerance of low dissolved oxygen and high organic pollution conditions.

Implementing the HBI system initially required counting organisms to a 100-count, a semi-quantitative analysis. The HBI count has since been modified to count a maximum of 10 organisms of each encountered taxon. This approach limits bias

due to dominance effects of one or two species in a sample (Hilsenhoff, 1998). Using the maximum 10-count per taxon, ILM developed MBI values for all of the benthic sampling locations associated with the Site. The MBI values developed for the Site can be used to compare the sampling locations with each other. This table also shows the results of applying the MBI tolerance values for aquatic macroinvertebrate families based solely on organism presence. This approach is a qualitative assessment, resulting in Tolerance Biotic Index (TBI) values, used by the Wisconsin Department of Natural Resources (Lillie and Schlesser, 1994). The TBI is the average tolerance value for the taxa-assigned tolerance values in a sample.

Other metrics were also applied to the project's benthic community data (as presented in MDEQ *Qualitative Biological* and *Habitat Survey Protocols for Wadable Streams and Rivers* (Procedure 51, Revised May 2002), including:

Metric 1. Total Number of Taxa. This is the total number of taxa identified. Taxa richness has historically been a key component in most all evaluations of macroinvertebrate community integrity. The underlying reason is the basic ecological principle that healthy, stable biological communities have high species diversity. Increases in number of taxa are well documented to correspond with increasing water quality and habitat suitability. Small, pristine headwater streams may, however, be exceptions and show low taxa richness.

Metric 2. Total Number of Mayfly Taxa. This is the number of taxa in the order Ephemeroptera. Mayflies are an important component of a high quality stream biota. As a group, they are decidedly pollution sensitive and are often the first group to disappear with the onset of perturbation. Thus, the number of taxa present is a good indicator of environmental conditions.

Metric 3. Total Number of Caddisfly Taxa. This is the number of taxa in the order Trichoptera. Caddisflies are often a predominant component of the macroinvertebrate fauna in larger, relatively unimpacted streams and rivers but are also important in small headwater streams. Though tending to be slightly more pollution tolerant as a group than mayflies, caddisflies display a wide range of tolerance and habitat selection among species. However, few species are extremely pollution tolerant and, as such, the number of taxa present can be a good indicator of environmental conditions.

Metric 4. Total Number of Stonefly Taxa. This is the number of taxa in the order Plecoptera. Stoneflies are one of the most sensitive groups of aquatic insects. The presence of one or more taxa is often used to indicate very good environmental quality. Small increases or small declines in overall numbers of different stonefly taxa is thus very critical for correct evaluation of stream quality.

Metric 5. Percent Mayfly Composition. This is the ratio of the number of individuals in the order Ephemeroptera to the total number of organisms collected. As with the number of mayfly taxa, the percent abundance of mayflies in the total invertebrate sample can change dramatically and rapidly to minor environmental disturbances or fluctuations.

Metric 6. Percent Caddisfly Composition. This is the ratio of the number of individuals in the order Trichoptera to the total number of organisms collected. As with the number of caddisfly taxa, percent abundance of caddisflies

is strongly related to stream size with greater proportions found in larger order streams. Optimal habitat and availability of appropriate food type seem to be the main constraints for large populations of caddisflies.

Metric 7. Percent Contribution of the Dominant Taxon. This is the ratio of the number of individuals in the most abundant taxon to the total number of organisms collected. The abundance of the numerically dominant taxon is an indication of community balance. A community dominated by relatively few taxa for example, would indicate environmental stress, as would a community composed of several taxa but numerically dominated by only one or two taxa.

Metric 8. Percent Isopods, Snails, and Leeches. This is the ratio of the sum of the number of individuals in the order Isopoda, class Gastropoda, and class Hirudinea to the total number of organisms collected. These three taxa, when compared as a combined percentage of the invertebrate community, can give an indication of the severity of environmental perturbation present. These organisms show a high tolerance to a variety of physical and chemical parameters. High percentages of these organisms at a sample site are very good evidence for stream degradation.

Metric 9. Percent Surface Dependent. This metric is the ratio of the number of macroinvertebrates which obtain oxygen via a generally direct atmospheric exchange, usually at the air/water interface, to the total number of organisms collected. High numbers or percentages of surface breathers may indicate large diurnal dissolved oxygen shifts or other biological or chemical oxygen demanding constraints. Areas subject to elevated temperatures, low or erratic flows may also show disproportionately high percentages of surface dependent macroinvertebrates.

6.0 RISK CHARACTERIZATION

Risk Characterization (Step 7) is the final step of the BERA process and includes two major components: risk estimation and risk description. Risk characterization combines the results of the studies performed to produce an estimate of the ecological risk and describe that risk in terms of extent, future potential for risk, how long might contamination remain, and what are the prospects of natural recovery if no action is taken.

6.1 Risk Estimation

Since the Triad approach (i.e., toxicity test, benthic invertebrate community survey, and sediment chemistry) has been used to evaluate contaminated sediments, the risk estimation section describes how theses studies are integrated to draw conclusions about risk. Lines of evidence that were used to characterize risk in this BERA include:

- Comparing estimated or measured exposure levels for a particular chemical against screening levels that are known from the literature to be toxic to the benthic macroinvertebrates selected as assessment endpoints;
- Comparing observed effects in the benthic macroinvertebrate communities associated with the site with benthic macroinvertebrate communities at a reference area; and
- Comparing laboratory tests (bioassays) with sediment from the site and from a reference site.

6.1.1 Sediment Chemistry

Table 6-1 presents a comparison of all results to TEC and PEC values. TEC values were exceeded at four sample locations (SE/RC-9/1-002, SD-C1-005, SD-A1-006, and SD-E2-003), and PEC values were exceeded at three locations (SD-C1-005, SD-A1-006, and SD-E2-003). The sediment chemistry data at each sample location has been assessed through the use of the mean PEC-Q to predict the toxicity for mixtures of various contaminants in sediments. Ingersoll *et al.* (2000) observed an overall increase in the incidence of toxicity with an increase in the mean quotients in toxicity tests, and that there is a consistent increase in the toxicity at a mean quotient of > 0.5. The mean PEC-Q for the Red Cedar River ranged from to 0.026 at reference location SD-007 to 1.59 at SD-E2-003 (**Table 6-2**). A mean PEC-Q over 0.5 was found at SD-E2-003, SD-C1-005, and SD-A1-006. The primary contaminants contributing to the elevated mean PEC-Q were lead and chromium at SD-E2-003, nickel and zinc at SD-C1-005, and chromium, nickel and zinc at SD-A1-006.

MacDonald *et al.* (2000) also looked at the predictive ability of the CBSQGs, examining an existing database to determine the relationships between the degree of chemical contamination and probability of observing toxicity in freshwater sediments. MacDonald et al. found that subsequent curve-fitting indicated that the mean PEC-quotient is highly correlated with incidence of toxicity ($r^2 = 0.98$), with the relationship being an exponential function. The resulting equation (Y =101.48 (1-0.36^X) can be used to estimate the probability of observing sediment toxicity at any mean PEC quotient. The mean PEC-Q are predicted to result in >50% toxicity at locations SD-E2-003, SD-C1-005, and SD-A1-006.

Thus, based on sediment chemistry, there is risk to benthic invertebrate community at three locations within the Red Cedar River (SD-E2-003, SD-C1-005, and SD-A1-006). Location SD-E2-003 is approximately 440 feet upstream of the North Ditch Confluence (along the north or downstream edge of the Site), while samples SD-A1-006 and SD-C1-005 are approximately 60 feet and 110 feet respectively, downstream of the CSX rail bridge. All three samples are located downstream of the south ditch (previously located at the upstream edge of the site) and are adjacent to the former developed portion of the site.

o.1.2 Bioassays

Whole sediment toxicity tests were conducted using *H. azteca*. Six site sediment samples, two reference samples, and a control sediment sample were used in the 28-day whole sediment toxicity tests conducted with *H. azteca*. The laboratory negative control survival was 94%, which meets the endpoint having at least 70% survival in the control.

Results from sample SD-E2-003 showed a zero percent survival rate (**Table 6-1**), indicating extreme acute toxicity of the sediments to the test organisms. Survival for all other locations was not significantly different from the laboratory control. Mortality ranged from 4% at SE-RE-3/3-004 to 21% at SD-C1-005. Sediments having ≤24% mortality are considered nontoxic as defined by Berry et al. (1996, and cited in EPA 2005b). Growth in all treatments was significantly lower than in the laboratory control group. Growth at SD-C1-005 and reference site SE/RC-13/1-008 was significantly different (p=0.005) from reference site SD-007. Growth or reproduction of amphipods may be a more sensitive toxicity endpoint compared to survival (EPA, 2000). Natural or anthropogenic stressors that affect growth of invertebrates may also affect reproduction, because of a minimum size needed for reproduction (EPA, 2000). Thus, sediment contaminants had a toxic effect on growth at SD-C1-005.

Thus, based on bioassay results, there is risk to the benthic invertebrate community at two locations, SD-C1-005 and SC-E2-003.

6.1.4 Community Studies

Community studies are another line of evidence to determine whether aquatic ecosystem may have been impacted by siterelated contaminants. Risks are characterized by comparing observed effects in the benthic invertebrate communities associated with the site with benthic invertebrate communities at reference sites.

The results of applying both the MBI and the TBI indices suggest that most of the sample locations have significant oxygen-depleting pollution concerns (**Table 6-3**). Generally, it is assumed that the more pollution there is in water, the less oxygen. A higher biotic index, on a scale of 0 to 10, indicates a higher tolerance of low dissolved oxygen and high organic pollution conditions. The highest MBI were measured at survey stations 002 (7.87), 003 (7.88), and 004 (8.0). The most tolerant taxa were also found at 002 and-004. Location 002 is approximately 20 feet downstream of the north ditch confluence. Locations 003 and 004 both located adjacent to the former site, between the former south ditch and the north ditch confluences, which were the two former wastewater outfalls to the river.

When looking at the individual metrics (**Table 6-4**), the highest taxa richness was at J-2, which is the furthest downstream location from the site, downstream of the north ditch confluence. The next highest number of taxa were found at the two reference locations. The total number of taxa measures the overall variety of the macroinvertebrate assemblage; as perturbation increases, the number of taxa will decrease (Barbour et al., 1999). The lowest number of taxa (2) were found at survey stations 003 and 004.

Three mayfly taxa were found at station 001, and one taxa was found at the reference locations. Mayflies are an important component of a high quality stream biota. As a group, they are decidedly pollution sensitive and are often the first group to disappear with the onset of perturbation. Thus, the number of taxa present is a good indicator of environmental conditions (MDEQ, 2002). Caddisfly taxa were only found in the reference locations, though they were found on submerged cinderblock between stations 004 and 005. Though tending to be slightly more pollution tolerant as a group than mayflies, caddisflies display a wide range of tolerance and habitat selection among species (MDEQ, 2002). Of note, stonefly was only found at station 003. Stoneflies are one of the most sensitive groups of aquatic insects. The presence of

one or more taxa is often used to indicate very good environmental quality. Small increases or small declines in overall numbers of different stonefly taxa is thus very critical for correct evaluation of stream quality (MDEQ, 2002).

At stations 002, 003, and 004, the dominant taxa (>90%) was non-biting midges (*Chironomidae*). In contrast, chirnommidae were less than 75% of the total taxa at all other locations. The abundance of the numerically dominant taxon is an indication of community balance. A community dominated by relatively few taxa for example, would indicate environmental stress, as would a community composed of several taxa but numerically dominated by only one or two taxa (MDEQ, 2002). Chiromommidae have a tolerance value of 8; tolerance values are on a 0 to 10 scale, 0 representing the tolerance value of an extremely sensitive organism and 10 for a tolerant organism (Barbour et al., 1999).

The highest percent surface dependent species was found at station 005 (22%). Surface dependent species were also found at station 001 (14%), A-1 (3%), and at one reference location (station 008, 9%). High numbers or percentages of surface breathers may indicate large diurnal dissolved oxygen shifts or other biological or chemical oxygen demanding constraints. Areas subject to elevated temperatures, low or erratic flows may also show disproportionately high percentages of surface dependent macroinvertebrates (MDEQ, 2002).

Thus, based on the community studies, there is risk to the benthic invertebrate community at three survey locations, 002, 003, and 004, though the most intolerant species was found at station 003.

6.2 Uncertainty Analysis

There are several sources of uncertainties associated with the ecological risk assessment process. The uncertainty analysis addresses the major assumptions that affect the degree of confidence in the estimate of risk. Knowing the uncertainties associated with the risk estimates aids the risk manager in making the Scientific/Management Decision at the end of the ecological risk assessment. General and site-specific uncertainties associated with this BERA include:

- The BERA is based on available data which, based on current practice, are assumed to be adequate. As the number of sampling points increase, the uncertainty about the true distributions of values decreases. However, even with a large number of sampling locations, it is impossible to conclude definitively that concentrations above those measured do not exist at the Site.
- Natural and anthropogenic background levels of Site constituents of ecological concern (COEC) may be present in sediment collected from the Site and surrounding areas. As such, Site data was compared to COEC concentrations in sediment samples collected from reference areas. Arsenic, chromium, copper, lead, nickel and zinc were measured in reference sediments at similar or higher concentrations than

investigative samples (Table 5-1). Thus, site-related risks to aquatic receptors may be over-estimated because background levels of COEC are contributing to the risk.

6.3 RISK DESCRIPTION

The risk description provides information important for interpreting the risk results and for identifying a level for harmful effects on the assessment endpoints. The risk description also provides information to help the risk manager judge the likelihood and ecological significance of the estimated risks. At the completion of the risk characterization, a Scientific Management Decision Point (SMDP) occurs. Decisions are made by the risk manager concerning what future actions, if any, are to be undertaken.

The objective of this BERA is to support the implementation of the selected remedy for sediments in the Middle Fork of the Red Cedar River, which is forms the western boundary or the site. Areas of river sediments that are contaminated at levels considered unsafe for aquatic animals would be removed from the river. The degree of cleanup in the river sediments is based on the goal of protecting that animals that live part or all of their lives in the sediment (benthic organisms), which are important in the food chain of the river's ecosystem. Cleaning up sediments to protect benthic organisms is expected to benefit the fish, birds, and mammals that inhabit or feed in the river. This will also keep the surface water clean. To meet this objective, the BERA:

- Evaluated contaminant levels in sediment.
- Assessed the potential for adverse impact to ecological receptors, focusing on exposures to aquatic invertebrate communities, using sediment sampling, laboratory bioassays, and community studies.
- Utilizes results of the BERA and previous site investigation data to isolate the areas of sediment that will be removed and to establish site-specific cleanup goals

Sometimes more than one line of evidence is needed to reasonably show that contaminants from a Site are likely to cause adverse effects on the assessment endpoint(s). Lines of evidence that were used to characterize risk in this BERA and to site-specific cleanup levels include:

- Comparing estimated or measured exposure levels for a particular chemical in sediment against screening levels that are known from the literature to be toxic to the benthic invertebrates which were selected as assessment endpoints;
- Comparing laboratory tests (bioassays) with sediment from the Site and from a reference site and from the laboratory control; and

• Comparing observed effects in the benthic invertebrate communities associated with the Site with benthic invertebrate communities at a reference site.

Table 6-5 presents the lines of evidence used in assessing impacts on the aquatic ecosystems in the Red Cedar River in the vicinity of the site. Impacts on the aquatic ecosystem are highly likely due to lead at SD-E2-003 and nickel and zinc at SD-C1-005.

7.0 DEVELOPMENT OF SITE-SPECIFIC CLEANUP LEVEL

Based on the results of the sediment toxicity and benthic macroinvertebrate community studies, site-specific aquatic life protection criteria were developed for select chemicals of concern (COCs) in sediment. These site-specific criteria will be used in conjunction with additional bulk sediment sampling to better define impacted areas of Red Cedar River. As part of the sediment cleanup level development, chemicals of concern (COCs) are identified, background threshold values (BTVs) are developed, and cleanup levels are proposed based on the results the BERA.

7.1 Chemicals of Concern in Sediment

Sediment samples collected for chemical analysis as part of the BERA were analyzed for select metals (i.e., arsenic, cadmium, chromium, copper, lead, nickel, and zinc), PAHs, and PCBs. These analytes were considered to be chemicals of concern (COC) based on the FCMP (Final Corrective Measures Proposal, Former Stanley Tool Works, Fowlerville, Michigan, Earth Tech/Weston, February, 2004) and the FCMP Appendix D - Technical Memorandum: Preliminary Sediment Cleanup Criteria and Data Evaluation, Red Cedar River, Former Stanley Tool (ET/W, 2004).

The samples collected as part of the BERA contained no detectable PCBs in any of the investigative samples or the field duplicate samples. PCBs were detected in historic samples (ET/W, 2004) at concentrations ranging from 5.2 ug/kg to 9,180 ug/kg. A surface weighted average concentration of 152.6 ug/kg total PCBs was calculated in the FCMP (ET/W 2004), which does not exceed the PEC of 676 ug/kg.

Benzo(a)pyrene was detected in two BERA sediment samples, at concentrations below the TEC. PAHs were detected in historic samples (ET/W2004) at concentrations ranging from 6.3 ug/kg to 8,590 ug/kg. The sum of surface weighted averages of individual PAHs based on values calculated in the RCMP (ET/W, 2004) is 1,788.5 ug/kg, which slightly exceeds the PEC of 1610 ug/kg.

Arsenic was detected in six of the eight samples collected for the BERA, at concentrations ranging from 5.04 mg/kg to 12.8 mg/kg. Although the calculated Upper Confidence Limit (UCL) for the arsenic data set (at a 95%confidence level) is slightly greater than the TEC (10.25 v. 9.79 mg/kg), the arsenic data are normally distributed and exhibit a relatively low standard deviation, suggesting the data are from the same population (i.e., there has been no significant contribution to sediment concentrations of arsenic attributable to the Site). To test this hypothesis, the Extreme Values (Dixons Test) was utilized to determine if the maximum and minimum values of (12.8 mg/kg at sample SE/RC 9/1-002, and 1.675 [1/2 the

reporting limit] at sample SE/RE 3/3-004) are statistical outliers. The results of this test, presented in **Table 7-1**, indicate that neither the minimum or maximum values are outliers, suggesting that the observed values of arsenic are from the same population, and are not indicative of impacts resulting from the site. Arsenic was detected in historic samples (ET/W2004) at concentrations ranging from 0.84 mg/kg to 65 mg/kg. The surface weighted average of arsenic calculated in the RCMP (ET/W, 2004) is 14.3 mg/kg, which slightly exceeds the TEC of 9.79 mg/kg.

While cadmium did not exceed its PEC, cadmium is included because it is a component of PEC quotient approach and it did exceed its TEC at a few historic sample locations. Cadmium was not detected in ay sample collected during the BERA. The reporting limits for cadmium were all below the TEC of 0.99 mg/kg. Cadmium concentrations in the historic samples ranged from 0.027 mg/kg to 1.9 mg/kg. The surface weighted average of cadmium calculated in the RCMP (ET/W, 2004) is 0.3 mg/kg, which does not exceed the TEC.

Table 7-2 presents a statistical summary and results of distribution testing on each of the remaining metals (i.e., chromium, copper, lead, nickel, and zinc). For statistical analysis, a value of one-half of the reporting limits was used for non-detect results. Where a field duplicate was collected, the higher of the two values reported between the investigative ample and the associated field duplicate sample was utilized. The data presented in Table 7-2 reveal a marked increase in the concentrations of chromium, copper, nickel, and zinc within samples SD-E2-003, SD-C1-005 and SD-A1-006, as compared to the rest of the investigative samples and the two reference samples. In all cases, the average concentration from these three samples exceeded the average of the remainder of the sample set by at least one order-of-magnitude. The concentration of lead at sample SD-E2-003 showed a marked increase over the rest of the investigative samples and the two reference samples, however, concentrations of lead in samples SD-C1-005 and SD-A1-006, although still higher than the remainder of the data set, do not show the order-of-magnitude level of increase as exhibited by sample SD-E2-003.

7.2 Background Threshold Values

Site-specific background threshold values (BTVs) were developed for the COCs in sediment using background samples summarized in the Final Corrective Measures Proposal (ET/W, 2004) for the Former Stanley Tools, Fowlerville, MI and two reference samples collected as part of this BERA. Individual point-by-point site observations are compared with BTVs to determine the presence or absence of contamination due to site related activities. Appendix E (Table E-1) provides the background/reference dataset. As part of BTV development, Dixon's outlier test was performed on each dataset and boxplots were made; these results are provided in the appendix (Table E-2). Upper outliers were excluded

from the datasets; lower outliers were not excluded. BTVs were developed using ProUCL version 4.0. Following the recommendation of ProUCL, the 95% upper prediction limit UPL or upper percentile for gamma distributed data represents the preferred estimate of BTV. For data that appear to follow one or more distribution (i.e., appear normal, lognormal, and/or gamma distributed at 5% significance level), the higher value of the normal 95% UPL, the lognormal 95% UPL, and the 95% percentile following a gamma distribution was selected as the BTV. If the UPL or upper percentile exceeded the maximum in the dataset, the maximum was selected as the BTV. The ProUCL output is provided in **Table E-3**. The BTVs are summarized in **Table 7-3**.

The BTVs for all chemicals were exceeded, though only slightly for arsenic and cadmium. Two-sample hypothesis testing was performed for these metals using ProUCL. The use of parametric and nonparametric two-sample hypotheses testing approaches is quite common in many environmental applications including site versus background comparison studies. The Mann-Whitney (or Wilcoxon-Mann-Whitney) test is a nonparametric test used for determining whether a difference exists between the site and the background population distributions. The two data sets are not required to be from a known type of distribution. The WMW test does not assume that the data are normally distributed, although a normal distribution approximation is used to determine the critical value of the test for large sample sizes (EPA, 2007). Based on this hypothesis testing, it was demonstrated that the site data is less than background for arsenic and cadmium (Table E-4). As these metals were found to be at background levels, they are not evaluated as further as COCs.

7.3 Proposed Cleanup Levels

Sediment cleanup levels are proposed for chemicals that pose a potential risk to the aquatic ecosystem of the Red Cedar River adjacent to the former Stanley Tools facility. The Final Decision reflects the recommendations presented within the *Technical Memorandum* (ET/W, 2004) for additional ecological testing to ensure that contaminants were not present in the stream at levels deemed harmful to aquatic life, and to define the areas with exceedences falling between preliminary screening criteria, specifically the Threshold Effect Concentrations (TECs), defined as concentrations below which adverse effects are not expected to occur and Probable Effect Concentrations (PECs), defined as concentrations above which adverse effects probably would occur. The TEC and PEC criteria are literature-based values for freshwater ecosystems and are used by the MDEQ Water Quality Division as screening criteria. These adverse effects are typically determined by exposure by the most sensitive of ecological receptors in high-quality freshwater ecosystems, unlike the Red Cedar River which has been determined to be a shallow, warm water stream which is too small to be navigated safely, and to shallow to support a sports fishery or attract recreational activities. Therefore they represent worst-case conservative values, which can then be refined with site-specific calculated values stemming from a BERA.

Of the COCs, PCBs and PAHs were not detected or detected infrequently in the BERA dataset. As such, a site-specific cleanup level cannot be determined from the BERA dataset for these COCs. As presented in the FCMP (ET/W, 2004), an ecological-based sediment cleanup value of 1 mg/kg is proposed for PCBs, using a surface weighted average concentration. The surface weighted average concentration of PCBs (0.1526 mg/kg) does not exceed the proposed cleanup level. For the total PAHs, the mid-point of the TEC and PEC is proposed as the cleanup level (12.205 ug/kg-total PAH at 1% organic carbon). The maximum normalized total PAH concentration in the historic dataset (ET/W, 2004) is 5.470 ug total PAH/kg, and does not exceed the proposed cleanup level.

For the remaining COCs, the following concentrations are proposed as the cleanup level for chromium, copper, lead, nickel, and zinc in sediments of the Red Cedar River:

Chromium - 133 mg/kg Copper - 150 mg/kg Lead - 130 mg/kg Nickel - 58 mg/kg Zinc - 527 mg/kg

The selection of these cleanup levels are supported by the sediment chemistry data, bioassay results, and community survey results for samples SD-E2-003, SD-C1-005, and SC-A1-006. Concentrations of chromium, lead, nickel and/or zinc exceeded published PEC concentrations in these three samples. However, toxic effects on benthic organisms were observed in the bioassays results only for locations SD-E2-003 and SD-C1-005. At SD-E2-003, lead is clearly the risk driver; at SD-C1-005, nickel and zinc are the risk drivers.

Although the concentrations of chromium, nickel and zinc at SD-A1-006 exceeded their respective PEC values, no toxic effects were found in the bioassay. In addition, MBI values for this location were the lowest observed at any of the community survey locations. Therefore, the observed concentrations of these contaminants at SD-A1-006 are proposed as their clean-up objectives.

The concentration of lead found in sediments at SD-E2-003 (789 mg/kg) is well above published TEC and PEC levels. It is notable however, that lead has not been detected at highly elevated concentrations within any other investigative sediment sample collected in the River at or near the Site. Specifically, of the 133 historic (ET/W, 2004) and BERA-related sediment samples collected and analyzed for lead excluding sample SD-E2-003, the maximum and mean

concentrations observed, were 97 mg/kg (at SD-L1), and 13.3 mg/kg, respectively. These values are below the published PEC value (130 mg/kg) for this contaminant. Because of the lack of data between the extreme value detected at SD-E2-003 and the remaining sample population from which inferences may be drawn regarding observable toxic effects, the published PEC value for lead is considered appropriate as a clean-up objective.

Elevated concentrations of copper in sediments in the Red Cedar River are co-located with similar elevated concentrations of chromium, nickel and/or zinc. Although the concentrations of copper in the BERA sediment samples are somewhat elevated in samples SD-E2-003, SD-C1-005, and SC-A1-006, copper does not appear to drive risk in any samples. Thus, the published PEC value for copper is considered appropriate as a clean-up objective.

8.0 REFERENCES

American Society for Testing and Materials. 2000. Standard Test Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Fresh Water Invertebrates. ASTM E1706-95b.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Earth Tech/Weston (ET/W). 2004. Final Corrective Measures Proposal, Former Stanley Tool Works, Fowlerville, Michigan, February, 2004.

ENTACT. 2007. Baseline Ecological Risk Assessment Work Plan.

Hilsenhoff, W.L., 1982. Using a Biotic Index to Evaluate Water Quality in Streams, Wisconsin Department of Natural Resources Technical Bulletin No. 132, 22 pp.

Hilsenhoff, W.L., 1987. An Improved Biotic Index of Organic Stream Pollution, *The Great Lakes Entomologist*, 20(1):31-39.

Hilsenhoff, W.L., 1988. Rapid Field Assessment of Organic Pollution with a Family-level Biotic Index, *Journal of the North American Benthological Society*, 7:65-68.

Ailsenhoff, W.L., 1998. A Modification of the Biotic Index of Organic Stream Pollution to Remedy Problems and Permit Its Use throughout the Year, *The Great Lakes Entomologist*, 31(1):1-12.

Ingersoll, C.G., D.D. MacDonald, N. Wang, J.L. Crane, L.J. Field, P.S. Haverland, N.E. Kemble, R.A. Lindskoog, C. Severn, and D.E. Smorong. 2000. Prediction of toxicity using consensus-based freshwater sediment quality guidelines. U.S. EPA Great Lakes National Program Office. EPA-905/R-00/007.

Ingersoll, C.G., D.D. MacDonald, N. Wang, J.L. Crane, L.J. Field, P.S. Haverland, N.E. Kemble, R.A. Lindskoog, C. Severn, and D.E. Smorong. 2001. Predictions of sediment toxicity using consensus based freshwater sediment quality guidelines. Arch. Environ. Contam. Toxicol. 41:8-21.).

Lillie, R.A., and R.A. Schlesser, 1994. Extracting Additional Information from Biotic Index Samples, *The Great Lakes Entomologist*, 27(3):129-136.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. "Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems". Arch. Environ. Contam. Toxicol. 39: 20-31.

Michigan Department of Environmental Quality (MDEQ). 2002. Qualitative Biological and Habitat Survey Protocols for Wadable Streams and Rivers (Procedure 51, Revised May 2002).

U.S. Environmental Protection Agency (EPA). 1990. Biological Criteria: National Program Guidance for Surface Waters. Office of Water Regulations and Standards. U.S. EPA, Washington D.C. EPA-440/5-90-004.

EPA. 1992a. Framework for Ecological Risk Assessment. EPA/630/R-92/001.

EPA. 1992b. Sediment Classification Methods Compendium. EPA 823-R-92-006.

EPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments - Interim Final. EPA 540-R-97-006.

EPA. 1998. Guidelines for Ecological Risk Assessment (EPA, 1998). EPA/630/R-95/002F.

EPA. 1999. Ecological Risk Assessment and Risk Management Principles for Superfund Sites. OSWER Directive 9285.7-28P.

EPA. 2000. (Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA 600/R-99/064.

EPA. Region IV, 2002. Ecological Assessment Standard Operating Procedures and Quality Assurance Manual, 2002.

EPA Region V. 2005a. Superfund Ecological Risk Assessment 8-step Overview (EPA, 2005). Last updated on Monday, January 3, 2005. http://www.epa.gov/region5superfund/ecology/html/8stepera.html

EPA. 2005b. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA-600-R-02-011. Office of Research and Development. Washington, DC 20460

EPA. 2007. ProUCL Version 4.0 and User Guide. June 13 2007. EPA/600/R-07.038

Wisconsin Department of Natural Resources (WDNR). 2003. Consensus-Based Sediment Quality Guidelines Recommendations for Use & Application Interim Guidance. Developed by the Contaminated Sediment Standing Team. December 2003. WT-732 2003.

TABLES

Table 5-1 Sediment Chemistry Results

	BTV	SD-J2-001	SD-J2-001/FD	SE/RC-9/1-002	SD-E2-003	SE-RE-3/3-004	SD-C1-005	SD-A1-006	SD-007	SE/RC-13/1-008
		7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/25/2007	7/25/2007
		J2	J2	RC-9/1	E2	SE-RE-3/3	SD-C1	A1	SD-007	SE/RC-13/1
		0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12
Units										
%		66	70.9	73.6	60.9	74.7	61	58.9	73.2	73.8
mg/kg		11,900	12,000	10,200				20,800		
mg/kg	13.7	5.04	6.28	12.8	10.7	<3.35 U	10.9	8.64	<3.42 U	7.11
mg/kg	0.513	<0.757 U	<0.706 U	<0.679 U	<0.821 U	<0.669 U	<0.820 U	<0.848 U	<0.683 L	<0.678 L
mg/kg	13.87	11.3	13.5	13.2	112	7.27	77.2	133	3.27	6.61
mg/kg	20.39	14.7	12.5	11.7	133	9.17	107	97		
mg/kg	16.19	4.16	4.18	9.18	789	4.03	11.2	15.1		2000000
mg/kg	11.6	8.04	8.62	6.56	43.5					9.16
mg/kg	88.36	29.7	31.4	29.6						21.7
ug/kg	0.097*	<0.045 U	<31.1 U	<30.9 U	<29.9 U	<26.3 U	<29.2 U	<29.6 11	<42.2	<28.9 L
	0.097*	<0.045 U	<31.1 U				The state of the s			
ug/kg	0.097*	<0.045 U	<31.1 U		100000000000000000000000000000000000000					-
ug/kg	0.097*	<0.045 U	<31.1 U	<30.9 U						
ua/ka	0.097*	<0.045 U	<31.1 U							4
	0.097*	<0.045 Ü	<31.1 U							
						1		12010	1,000	1 20.0
ug/kg	1.453*	<1320 U	<1410 U	<1990 U	<1640 U	<1200 U	<1640 U	<1360 U	<1220	<1220 L
ug/kg	1.453*	<2650 U	<2820 U	<2370 U						
ua/ka	1.453*	<1320 U	<1410 U	<1990 U						
ug/kg	1.453*	<661 U	<706 U							<610 U
										<61.0 U
ug/kg	1.453*	<661 U								
ug/kg	1.453*	<1320 U	<1410 U	<1190 U	<1640 U	<1200 U				
ug/kg	1.453*	<1320 U	<1410 U							
ug/kg	1.453*	<1320 U	<1410 U	<1190 U						
ug/kg	1.453*	<66.1 U	<70.6 U							
				700000000000000000000000000000000000000						
				11.1.0.0						
		<1320 U	<1410 U		<1640 U		<1640 U	<1360 U	<1220 U	
	Units % mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg	Units	J2	J2	March Marc	J2	Display Disp	Units	J2	Description

* Based on total PNAs; total PCBs BTV = Background threshold value; see Appendix D. NOTE:

< [Value] U: Value not detected at or above the stated reporting limit

Table 5-2 Bioassay Results

Field Sample		SD-J2-001	SD-J2-001/FD	SE/RC-9/1-002	SD-E2-003	SE-RE-3/3-004	SD-C1-005	SD-A1-006	SD-007 REFERENCE	SE/RC-13/1-008 REFERENCE
Sample Da		7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/25/2007	7/25/2007
Location		J2	J2	RC-9/1	E2	SE-RE-3/3	SD-C1	A1	SD-007	SE/RC-13/1
Depth (N)	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12
Parameter	Units									
oxicity ⁸							-			
Survival	%	95	:	91	0	96	79	91	94	95
Veight	mg	0.365		0.437	NA	0.372	10.293*	0.405	0.417	0.343*

NOTE:

a Lab control sample had 94% survival and weighted 0.543 mg

^{*} Significantly different (p=0.005) from reference site SD-007. Growth in all treatments was significantly lower than in the laboratory control group. Survival in sediment SD-E2-003 was significantly depressed compared to both reference site (SD007 and S

Table 5-3
Benthic Macroinvertebrate Sample Composition

Location	Family Name	Common Name	Trophic Status
SD-J2-001	Tubificidae	Tubifex	Collector-Gatherer
	Cambaridae	Freshwater Crawfishes	Predator
	Chironomidae	Non-Biting Midges	Gatherer
	Heptageniidae	Flat-Headed Mayflies	Predator
	Dytiscidae	Water Beetles	Predator
	Ephemerellidae	Spiny Crawler Mayflies	Gatherer
	Baetidae	Small Minnow Mayfly	Collector-Gatherer/ Scraper
	Gyrinidae	Whirligig Beetles	Predator
	Libellulidae	Skimmer Dragonflies	Predator
	Palaemonetes	Freshwater Shrimp	Gatherer
	Psephenidae	Water Pennies	Gatherer
SE/RC-9/1-002	Chironomidae	Non-Biting Midges	Gatherer
	Clam	Clam	Gatherer
	Dytiscidae	Water Beetles	Predator
SD-E2-003	Chironomidae	Non-Biting Midges	Gatherer
	Perlidae	Common Stoneflies	Predator
SE/RE-3-3-004	Chironomidae	Non-Biting Midges	Gatherer
	Clam	Clams	Gatherer
SD-C1-005	Amphipoda	Scuds	Scavenger
	Chironomidae	Non-Biting Midges	Gatherer
	Corixidae	Water Boatmen	Gatherer
	Dytiscidae	Water Beetles	Predator
SD-A1-006	Ceratopogonidae	Biting Midges	Predator
	Chironomidae	Non-Biting Midges	Gatherer
	Corixidae	Water Boatmen	Gatherer
	Elmidae	Riffle Beetles	Gatherer
SD-007	Chironomidae	Non-Biting Midges	Gatherer
	Clam	Clams	Gatherer
, .	Elmidae	Riffie Beetles	Gatherer
	Heptageniidae	Flat-Headed Mayflies	Predator
	Hydropsychidae	Net-Spinning Caddisflies	Gatherer or Predator
	Leptoceridae	Long-Horned Caddisflies	Gatherer or Predator
SD-008	Chironomidae	Non-Biting Midges	Gatherer
	Culicidae	Mosquitos	Predator
	Dytiscidae	Water Beetles	Predator
	Gyrinidae	Whirligig Beetles	Predator
	Heptageniidae	Flat-Headed Mayflies	Predator
	Leptoceridae	Long-Horned Caddisflies	Gatherer or Predator
	Limnephilidae	Northern Caddisflies	Gatherer or Predator
Between SE/RE-3-3-	Chironomidae	Non-Biting Midges	Gatherer
004 and SD-C1-005	Heptageniidae	Flat-Headed Mayflies	Predator
	Leptoceridae	Long-Horned Caddisflies	Gatherer or Predator
	Limnephilidae	Northern Caddisflies	Gatherer or Predator

Table 5-4 Benthic Macroinvertebrate Community Survey Results

		ſ				Sample Number				
		SD-J2-001	SE/RC-9/1-002	SD-E2-003	SE/RE-3-3-004	SD-C1-005	SD-A1-006	SD-007	SD-008	Between SE/RE-3-3-004
										and SD-C1-005*
Macroinve	rtebrate Community		•			Sample Data				
Taxon	Common Name									
Tubificidae	Tubifex	5								
Cambaridae	Freshwater Crawfishes	2								
Ceratopogonidae	Biting Midges						2			
Chironomidae	Non-Biting Midges	33	42	47	67	37	14	23	34	8
Clam	Clams		1		1			3		
Corixidae	Water Boatmen					10	1			
Culicidae	Mosquitos								1	
Dytiscidae	Water Beetles	3	2	İ		11			2	
Ëlmidae	Riffle Beetles			·			14	11		
Ephemerellidae	Spiny Crawler Mayflies	1								
Baetidae	Small Minnow Myflies	1 1								
Gyrinidae	Whirligig Beetles	1							1	
Heptageniidae	Flat-Headed Mayflies	3						2	1 1	11
Hyalella	Scuds					1	<u></u>			
Hydropsychidae	Net-Spinning Caddisflies							3		
Leptoceridae	Long-Horned Caddisflies							11	4	1
Libellulidae	Skimmer Dragonflies	1								
Limnephilidae	Northern Caddisflies								4	3
Palaemonetes	Freshwater Shrimp	1								
Perlidae	Common Stoneflies			1						
Psephenidae	Water Pennies	4								

^{1*}Sample collected from an emerged cinderblock; not representative of sediment conditions, but provides information on the presence of these species within the waterbody.

Table 6-1 Comparison to Sediment Quality Benchmarks

Field Sample	ID			SD-J2-001	SD-J2-001/FD	SE/RC-9/1-002	SD-E2-003	SE-RE-3/3-004	SD-C1-005	SD-A1-006	SD-007 REFERENCE	SE/RC-13/1-008 REFERENCE
Sample Da	ite	Sedi	ment	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/25/2007	7/25/2007
Location		Bench		J2	J2	RC-9/1	E2	SE-RE-3/3	SD-C1	A1	SD-007	SE/RC-13/1
Depth (I	N)	TECa	PEC	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12
Parameter	Units								N			
Toxicity ^a		WEST-COLOR										
Survival	%			95	-	91	0	96	79	91	94	95
Weight	mg			0.365	-	0.437	NA	0.372	0.293*	0.405	0.417	0.343*
Physical Properties											1 01111	0.0-10
Percent Solids	- %			66	70.9	73.6	60.9	74.7	61	58.9	73.2	73.8
Total Organic Carbon	mg/kg			11,900	12,000	10,200				20,800		
Total Organic Carbon	%			1.19	1.20	1.02				2.08		
METALS												
Arsenic, Total	mg/kg	9.8	33	5.04	6.28	12.8	10.7	<3.35 U	10.9	8.64	<3.42 U	7.11
Cadmium, Total	mg/kg	0.99	5	<0.757 U	<0.706 U	<0.679 U	<0.821 L	<0.669 U	<0.820 U	<0.848	<0.683 U	<0.678
Chromium, Total	mg/kg	43	110	11.3	13.5	13.2	112	7.27	77.2	133	3.27	6.61
Copper, Total	mg/kg	32	150	14.7	12.5	11.7	133	9.17	107	97	<3.42 L	9.29
Lead, Total	'mg/kg	36	130	4.16	4.18	9.18	789	4.03	11.2	15.1	<3.42 U	4.64
Nickel, Total	mg/kg	23	49	8.04	8.62	6.56	43.5	6.64	267	57.9	<3.42 U	9.16
Zinc, Total	mg/kg	120	460	29.7	31.4	29.6	158	27.3	675	527	10.1	21.7
PCBS												Maria Carata Car
PCB-1016	ug/kg			<0.045 U	<31.1 U	<30.9 U	<29.9 U	<26.3 U	<29.2 U	<29.6 L	<42.2 U	<28.9
PCB-1221	ug/kg			<0.045 U	<31.1 U	<30.9 U	<29.9 L	<26.3 U	<29.2 U	<29.6 L	/ <42.2 U	<28.9
PCB-1232	ug/kg			<0.045 U	<31.1 U	<30.9 U	<29.9 L	<26.3 U	<29.2 U	<29.6 L	<42.2 U	<28.9
PCB-1248	ug/kg			<0.045 U	<31.1 U	<30.9 U	<29.9 L	<26.3 U	<29.2 U	<29.6 L	<42.2 U	<28.9
PCB-1254	ug/kg			<0.045 U	<31.1 U	<30.9 U	<29.9 L	<26.3 U	<29.2 U	<29.6 L	<42.2 U	<28.9 L
PCB-1260	ug/kg			<0.045 U	<31.1 U	<30.9 U	<29.9 L	<26.3 U	<29.2 U	<29.6 L	<42.2 U	<28.9 U

Table 6-1 Comparison to Sediment Quality Benchmarks

Field Sample		0-4		SD-J2-001	SD-J2-001/FD	SE/RC-9/1-002	SD-E2-003	SE-RE-3/3-004	SD-C1-005	SD-A1-006	SD-007 REFERENCE	SE/RC-13/1-008 REFERENCE
Sample D		A STATE OF THE PARTY OF THE PAR	ment	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/24/2007	7/25/2007	7/25/2007
Location		Bench	The state of the s	J2	J2	RC-9/1	E2	SE-RE-3/3	SD-C1	A1	SD-007	SE/RC-13/1
Depth	(IN)	TEC	PEC	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12	0-12
Parameter	Units			The state of the s								
SVOCS								***************************************				
Acenaphthene	ug/kg			<1320 L	<1410 L	<1990 U	<1640 L	<1200 U	<1640 U	<1360 L	J <1220 U	<1220 U
Acenaphthylene	ug/kg			<2650 L	<2820 U	<2370 U	<3280 L	<2410 U	<3280 U	<2730 L	J <2440 U	<2440
Anthracene	ug/kg	7		<1320 L	<1410 U	<1990 U	<1640 L	<1200 U	<1640 U	<1360 L	/ <1220 U	<1220
Benz(a)anthracene	ug/kg			<661 L	<706 U	<593 U	<821 L	<602 U	<820 U	<682 L	<610 U	<610
Benzo(a)pyrene	ug/kg	206 ^c	1987°	<66.1 L	<70.6 U	78.7	82.5	<60.2 U	<82.0 U	111	155	<61.0
Benzo(b)fluoranthene	ug/kg			<661 L	<706 U	<593 U	<821 L	<602 U	<820 U	<682 L	<610 U	<610 U
Benzo(g,h,i)perylene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	J <1220 U	<1220
Benzo(k)fluoranthene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	<1220 U	<1220 U
Chrysene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	<1220 U	<1220
Dibenz(ah)anthracene	ug/kg			<66,1 L	<70.6 U	<59.3 U	<82.1 L	<60.2 U	<82 U	<68.2 L	<61.0 U	
Fluoranthene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	(1220 U	<1220 U
Fluorene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	1 <1220 U	<1220
Indeno(1,2,3-cd)pyrene	ug/kg			<661 L	<706 U	<593 U	<821 L	<602 U	<820 U	<682 U	<610 U	
Vaphthelene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	<1220 U	<1220
Phenanthrene	ug/kg		Ĭ.	<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 U	/ <1220 U	<1220
Pyrene	ug/kg			<1320 L	<1410 U	<1190 U	<1640 L	<1200 U	<1640 U	<1360 L	<1220 U	<1220

Arch Environ Contam Toxicol 39:20-31 (see Table 2).

Bold indicates exceeds TEC; shading indicates exceeds PEC.

< [Value] U: Value not detected at or above the stated reporting limit

^a Lab control sample had 94% survival and weighted 0.543 mg

^b PEC and TEC values not presented for chemicals that were not positively detected in sediment.

^c Adjusted to average TOC in sediments of 1.37% or 13,725 mg/kg.

^d The Region 5 RCRA ecological screening level (ESL) is equivalent to the Consensus based threshold effect concentrations (TEC) as presented in MacDonald et. al. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems.

^{*} Significantly different (p=0.005) from reference site SD-007. Growth in all treatments was significantly lower than in the laboratory control group. Survival in sediment SD-E2-003 was significantly depressed compared to both reference site (SD007 and SE/RC-13/1-008) and lab control.

Table 6-2 Mean Probable Effect Concentration Quotients (PEC-Q) for Metals (mg/kg)

JCI - Former Stanely Tools

Fowlerville, MI

Field Sample ID	Arse	nic	Chrom	ium	Copp	per	Lea	nd	Nicl	kel	Zi	nc	,	Probability of Toxicity ^a
PEC	33	PEC-Q	110	PEC-Q	150	PEC-Q	130	PEC-Q	49	PEC-Q	460	PEC-Q	Mean PEC-Q	$Y = 101.48 - (1-0.36^{\circ}X)$
SD-J2-001	5.04	0.15	11.3	0.10	14.7	0.10	4.16	0.03	8.04	0.16	29.7	0.06	0.10	10.1
SD-J2-001/FD	6.28	0.19	13.5	0.12	12.5	0.08	4.18	0.03	8.62	0.18	31.4	0.07	0.11	11.0
SE/RC-9/1-002	12.8	0.39	13.2	0.12	11.7	0.08	9.18	0.07	6.56	0.13	29.6	0.06	0.14	13.7
SD-E2-003	10.7	0.32	112	1.02	133	0.89	789	6.07	43.5	0.89	158	0.34	1.59	81
SE-RE-3/3-004	<3.35	, - ·	7.27	0.07	9.17	0.06	4.03	0.03	6.64	0.14	27.3	0.06	0.07	71
SD-C1-005	10.9	0.33	77.2	0.70	107	0.71	11.2	0.09	267	5.45	675	1.47	1.46	79
D-A1-006	8.64	0.26	133	1.21	97	0.65	15.1	0.12	57.9	1.18	527	1.15	0.76	55
SD-007 REFERENCE	<3.42	- 1	3.27	0.03	<3.42	-	<3.42		<3.42	ere.	10.1	0.02	0.026	2.6
SE/RC-13/1-008 REFERENCE	7.11	0.22	6.61	0.06	9.29	0.06	4.64	0.04	9.16	0.19	21.7	0.05	0.10	10.0

Note: Cadmium was not detected in any sample.

— PEC-Q not calculated for non-detect concentration.

Bold indicates exceeds TEC; shading indicates exceeds PEC.

Mean PEC-Q = Sum PEC/total number of chemicals.

a MacDonald et al.(2000) found that subsequent curve-fitting indicated that the mean PEC-quotient is highly correlated with incidence of toxicity (r ² = 0.98), with the relationship being an exponential function. The resulting equation (Y =101.48 (1-0.36 X) can be used to estimate the probability of observing sediment toxicity at any mean PEC quotient.

Ta. j-3
Benthic Macroinvertebrate Community Analysis

							Sample Number	r			
		Family MBI	SD-J2-001	SE/RC-9/1-002	SD-E2-003	SE/RE-3-3-004	SD-C1-005	SD-A1-006	SD-007	SD-008	Between SE/RE-3-3-004
		Tolerance Value ¹							Reference	Reference	and SD-C1-005*
Macroinve	ertebrate Community						Sample Data				
Taxon	Common Name								1		
Tubificidae	Tubifex	9	5								
Cambaridae	Freshwater Crawfishes	6	2								
Ceratopogonidae	Biting Midges	6			*			2		1	
Chironomidae	Non-Biting Midges	8	33	42	47	67	37	14	23	34	8
Clam	Clams	8		1		1 1		1.,	3		
Corixidae	Water Boatmen	5					10	1	-		
Culicidae	Mosquitos	8			1		10			4	
Dytiscidae	Water Beetles	5	3	2			1	_		2	
Elmidae	Riffle Beetles	4		1				14	1	-	
Ephemerellidae	Spiny Crawler Mayflies	1 1	1					1 17		-	
Baetidae	Small Minnow Myflies	3	1	1				+			
Gyrinidae	Whirligig Beetles	4	1	1				7		1	
Heptageniidae	Flat-Headed Mayflies	3	3		1			7	2	1	11
Hyalella	Scuds	8					1 1				
Hydropsychidae	Net-Spinning Caddisflies	4 .			1				3		
eptoceridae	Long-Horned Caddisflies	4						1	1	4	4
_ibellulidae	Skimmer Dragonflies	2	1						<u> </u>		
Limnephilidae	Northern Caddisflies	3							1	4	3
Palaemonetes	Freshwater Shrimp	6	1								
Perlidae	Common Stoneflies	2			1						
Sephenidae	Water Pennies	4	4					-			
lo. MBI Organism	ns Counted ²	4	55	45	48	68	49	31	33	47	23
VIBI ^{3,5}			6.85	7.87	7.88	8.00	7.33	5.97	7.09	6,91	4.78
ГВІ ^{4,5}			4.64	7.00	5.00	8.00	6.50	5.75	5.17	5.00	4.70
otal Number of	аха		11	3	2	2	4.30	3.75 A	6	7	4.50

Notes:

- 1. Family MBI tolerance values (t_i) are from http://www.epa.gov/owow/monitoring/rbp/index.html , 2006.
- 2. A Maximum of 10 organisms was used for MBI calculations, according to Hilsenhoff, 1988.
- 3. Macroinvertebrate Biotic Index (MBI) = $\Sigma n_i t_i$ /N where n_i = no. individuals in each listed taxon, t_i = tolerance rating for each listed taxon, and N = total no. of listed organisms counted (IEPA, 2002).
- Mean tolerance value (TBI) = Σt/T where t=tolerance value for each listed taxon and T = no, of listed taxon in the sample (from Lillie and Schlesser, 1994).
- 5. Biotic Index (MBI and TBI) Interpretation (from Hilsenhoff, 1987).

*Sample collected from an emerged cinderblock; not representative of sediment conditions, but provides information on the presence of these species within the waterbody.

Value	Water Quality	Degree of Organic Pollution	
0.00-3.50	Excellent	No apparent organic pollution	
3.51-4.50	Very Good	Possible slight organic pollution	
4.51-5.50	Good	Some organic pollution	
5.51-6.50	Fair	Fairly significant organic pollution	
6.51-7.50	Fairly Poor	Significant organic pollution	
7.50-8.50	Poor	Very significant organic pollution	
8.51-10.00	Very Poor	Severe organic pollution	

Table 6-4
Benthic Macroinvertebrate Community Metrics

							Sample Lo	cation			
			SD-J2-001	SE/RC-9/1-002	SD-E2-003	SE/RE-3-3-004	SD-C1-005	SD-A1-006	SD-007	SD-008	Between SE/RE-3-3-00 and SD-C1-005
	Macroinvertebrate Community					Sample Data (Nu	mber of Organ	nisms Collected	per Taxa)		1 414 05 01 000
Taxon	Common Name O	rder								l Total	T
Tubificidae	Tubifex C	litellata	5								
Cambaridae	Freshwater Crawfishes D	ecapoda	2			,					
Palaemonetes	Freshwater Shrimp D	ecapoda	1				2010				
Hyalella	Scuds A	mphipoda					1				
Culicidae	Mosquitos Di	iptera								1	
Ceratopogonidae		iptera						2			
Chironomidae	Non-Biting Midges Di	iptera	33	42	47	67	37	14	23	34	8
Clam	Clams Ve	eneroida		1		1	<u> </u>		3	04	+ -
Corixidae	Water Boatmen He	emiptera					10	1			
Dytiscidae	Water Beetles Co	oleoptera	3	2			1	•		2	
Psephenidae	Water Pennies Co	oleoptera	4								+
Gyrinidae	Whirligig Beetles Co	oleoptera	1				_			1	
Elmidae	Riffle Beetles Co	oleoptera						14	1		
Ephemerellidae	Spiny Crawler Mayflies E	phemeroptera	1								
Baetidae		phemeroptera	1					-			
Heptageniidae	Flat-Headed Mayflies E	phemeroptera	3						2	1	11
Hydropsychidae	Net-Spinning Caddisflies Tr	richoptera							3		- ''-
_eptoceridae		richoptera							- 1	4	1
imnephilidae	Northern Caddisflies Tr	richoptera				-			-	4	3
Perlidae	Common Stoneflies PI	ecoptera			1			-		- 7	3
_ibellulidae		donata	1								
	Total Number of Organ	isms Counted	55	45	48	68	49	31	33	47	23
		number of taxa	11	3	2	2	4	4	6	7	4
To	tal number of mayfly (Ephemeroptera) ta	xa present (N)	3	0	0	0	0	0	1	1	1 1
	Percent Mayfly Co		9.09	0.00	0.00	0.00	0.00	0.00	6.06	2.13	47.83
	Total number of caddisfly (Trichoptera) ta		0	0	0.00	0.00	0.00	0.00	2	2.13	
	Percent Caddisfly Composition (%)			0.00	0.00	0.00	0.00				1
Total number of stonefly (Plecoptera) taxa present			0.00	0.00	1	0.00	0.00	0.00	3.03	17.02	17.39
Percent Stonelly Composition (%) ²			0.00					0	0	0	0
				0.00	2.08	0.00	0.00	0.00	0.00	0.00	0.00
	Percent Contribution of the Dominant Taxon (%)			93.33	97.92	98.53	75.51	45.16	69.70	72.34	47.83
B 16 1	Percent Isopods, Snails, and		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Percent Surfa	ace Dependent (hemiptera, diptera, cole	optera) (%)	14.55	4%	0%	0%	22%	3%	0%	9%	0%

^{1 -} Sample collected from an emerged cinderblock; not representative of sediment conditions, but provides information on the presence of these species within the waterbody.

^{2 -} Not a listed Metric in MDEQ Procedure #51.

^{3 -} Surface Dependent Taxa highlighted in Blue - See Appendix I, MDEQ Procedure #51.

Table 6-5
Lines of Evidence for Assessing Impacts on Aquatic Ecosystems at Measured Sediment Concentrations

			S	ample Location		
Line of Evidence	SD-J2-001	SE/RC-9/1-002	SD-E2-003	SE-RE-3/3-004	SD-C1-005	SD-A1-006
		1	81% probability of observing		79% probability of observing	55% probability of observing sediment
			sediment toxicity at any mean PEC		sediment toxicity at any mean	toxicity at any mean PEC quotient;
	PEC-Q<0.5 threshold; No	PEC-Q<0.5 threshold; No	quotient; lead and chromium	PEC-Q<0.5 threshold; No	PEC quotient; Nickel and zinc	chromium, nickel and zinc slightly above
Sediment Chemistry	impact	impact	(slightly) above PEC	impact	above PEC	PEC.
	No impact on	1				
	survival/growth in	No impact on survival/growth		No impact on survival/growth	21% Mortality (not significant);	No impact on survival/growth in comparison
Bioassay	comparison to reference	in comparison to reference	100% Mortality			to reference
	Biotic index - significant					
	organic pollution; intolerant	Biotic index - very significant	Biotic index - very significant	Biotic index - very significant	Biotic index - significant organic	Biotic index - fairly signficant organic
Benthic Community*	taxa present	pollution	pollution; senstive taxa present		pollution; intolerant taxa present	
		Impact possible; other		Impact possible; other		
		sources contributing to	Impact highly likely based on toxicity	sources contributing to	Impact likely based on toxicity	Impact possible; other source may be
Overall Conclusion	Impact unlikely	impacts	test and PEC-Q	impacts	test and PEC-Q	contributing

^{*} Reference locations biotic index showed significant organic pollution; intolerant texa present.

Table 7-1
Arsenic Statistical Evaluation

	As		
SE/RE 3/3-004			1
	1.675	U	X1
SD-007	1.71	U	X2
SD-J2-001/FD	6.28		1
SE/RC 13/1-			
008	7.11		
SD-A1-006	8.64		
SD-E2-003	10.7		
SD-C1-005	10.9		Xn-1
SE/RC 9/1-			
002	12.8		Xn

Null hypothesis = There are no outliers in the data Alternative hypothesis - Xn is an outlier Compute test statistic C = X(n) - X(n-1) / X(n) - X(2)

C =

0.171326

 $d_{0.05} =$

0.554

Conclusion: C > d, reject the null hypothesis

Null hypothesis = There are no outliers in the data

Alternative hypothesis - X1 is an outlier

Compute test statistic C = X(2) - X(1) / X(n-1) - X(2)

C =

0.003808

 $d_{0.05} =$

0.554

Conclusion: C > d, reject the null hypothesis

Table 7-2 Statistical Evaluation of BERA Sediment Data

		As		Cr		Cu -
	SE/RE 3/3-004	1.675 U	SD-007	3.27	SD-007	1.71 U
	SD-007	1.71 U	SE/RC 13/1-008	6.61	SE/RE 3/3-004	9.17
	SD-J2-001/FD	6.28	SE/RE 3/3-004	7.27	SE/RC 13/1-008	9.29
	SE/RC 13/1-008	7.11	SE/RC 9/1-002	13.2	SE/RC 9/1-002	11.7
	SD-A1-006	8.64	SD-J2-001/FD	13.5	SD-J2-001	14.7
	SD-E2-003	10.7	SDC1-005	77.2	SD-A1-006	97
	SD-C1-005	10.9	SDE2-003	112	SD-C1-005	107
	SE/RC 9/1-002	12.8	SD-A1-006	133	SD-E2-003	133
Number of Non Detects		2	1	ol		41
Percent Non-Detects		25		0		12.5
Minimum		1.675				100 A-100 DOM
Maximum				3.27		1.71
		12.8		133		133
Mean		7.48		45.76		47.95
Standard Deviation	A. Development	4.15		53.33	Transaction of the second	54.36
Distribution	Normal		LogNormal		LogNormal	Name of Persons
1101	0. 1 11 1/050/	10.05	Approximate gamma		Approximate gamma	72 7 22
UCL	Student's-t (95%)	10.25	UCL (95%)	125.35	UCL (95%)	134.33
Mean of samples 3, 5, a	nd 6			107.4		112.3
Mean of remainder of sa				8.8		9.3
8 13		Ph		Ni		7n
N 2	SD-007	Pb 1.71 U		Ni 1.71 U		Zn 10.1
× 2	SD-007 SE/RE 3/3-004	1.71 U	SD-007	1.71 U	SD-007	10.1
N D	SE/RE 3/3-004	1.71 U 4.03	SD-007 SE/RC 9/1-002	1.71 U 6.56	SD-007 SE/RC 13/1-008	10.1 21.7
SI D	SE/RE 3/3-004 SD-J2-001	1.71 U 4.03 4.16	SD-007 SE/RC 9/1-002 SE/RE 3/3-004	1.71 U 6.56 6.64	SD-007 SE/RC 13/1-008 SE/RE 3/3-004	10.1 21.7 27.3
S 12	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008	1.71 U 4.03 4.16 4.64	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD	1.71 U 6.56 6.64 8.62	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002	10.1 21.7 27.3 29.6
(SI IN)	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002	1.71 U 4.03 4.16 4.64 9.18	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008	1.71 U 6.56 6.64 8.62 9.16	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD	10.1 21.7 27.3 29.6 31.4
(SI 10)	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005	1.71 U 4.03 4.16 4.64 9.18 11.2	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003	1.71 U 6.56 6.64 8.62 9.16 43.5	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003	10.1 21.7 27.3 29.6 31.4 158
SE LIN	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527
(SI IA)	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005	1.71 U 4.03 4.16 4.64 9.18 11.2	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003	1.71 U 6.56 6.64 8.62 9.16 43.5	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003	10.1 21.7 27.3 29.6 31.4 158
Number of Non Detects	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527
Number of Non Detects Percent Non-Detects	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527 675
	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527 675
Percent Non-Detects	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527 675
Percent Non-Detects Minimum	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527 675
Percent Non-Detects Minimum Maximum	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527 675
Percent Non-Detects Minimum Maximum Mean	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006	10.1 21.7 27.3 29.6 31.4 158 527 675 0 0 10.1 675 185.01
Percent Non-Detects Minimum Maximum Mean Standard Deviation	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006 SDE2-003	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006 SD—C1-005	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006 SD—C1-005	10.1 21.7 27.3 29.6 31.4 158 527 675 0 0 10.1 675 185.01
Percent Non-Detects Minimum Maximum Mean Standard Deviation	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006 SDE2-003	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006 SD—C1-005	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006 SD—C1-005	10.1 21.7 27.3 29.6 31.4 158 527 675 0 0 10.1 675 185.01
Percent Non-Detects Minimum Maximum Mean Standard Deviation Distribution	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006 SDE2-003 Non-Parametric 95% Chebyshev (Mean,Sd) UCL	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789 11.2 1.71 789 104.88 276.46	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006 SD—C1-005 Log-Normal Approximate gamma	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267 1 12.5 1.71 267 50.14 89.98	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006 SD—C1-005 Log-Normal 95% Chebyshev	10.1 21.7 27.3 29.6 31.4 158 527 675 0 0 10.1 675 185.01 263.94
Percent Non-Detects Minimum Maximum Mean Standard Deviation Distribution	SE/RE 3/3-004 SD-J2-001 SE/RC 13/1-008 SE/RC 9/1-002 SDC1-005 SD-A1-006 SDE2-003 Non-Parametric 95% Chebyshev (Mean,Sd) UCL	1.71 U 4.03 4.16 4.64 9.18 11.2 15.1 789 11.2 1.71 789 104.88 276.46	SD-007 SE/RC 9/1-002 SE/RE 3/3-004 SD-J2-001/FD SE/RC 13/1-008 SD—E2-003 SD-A1-006 SD—C1-005 Log-Normal Approximate gamma	1.71 U 6.56 6.64 8.62 9.16 43.5 57.9 267 1 12.5 1.71 267 50.14 89.98	SD-007 SE/RC 13/1-008 SE/RE 3/3-004 SE/RC 9/1-002 SD-J2-001/FD SD—E2-003 SD-A1-006 SD—C1-005 Log-Normal 95% Chebyshev	10.1 21.7 27.3 29.6 31.4 158 527 675 0 0 10.1 675 185.01 263.94

Note: Cadmium is not evaluated because all samples were non-detect.

Table 7-3 **Background Threshold Values**

	Maximum	Distribution	Normal 95 UPL	Lognormal UPL	Gamma Upper 95th Percentile	BTV	Basis	Maximum Investigative Concentration
Total PCBs	0.097	Insufficient data			*	0.097	Maximum	9.18
Total PNAs	1.463	N;LN;G	1.453	2.518	1.645	1.453	Normal UPL	8.59
Arsenic*	13.7	N;LN;G	14.34	18.79	15.77	13.7	Maximum	65
Cadmium*	0.52	N;LN;G	0.513	0.576	0.537	0.513	Normal UPL	2.5
Chromium*	14	N;LN;G	12.74	13.87	13.04	13.87	Lognormal UPL	1760
Copper	21.7	N;LN;G	20.39	30.34	22.97	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Normal UPL	1370
Lead	17	N;LN;G	15.04	18.87	16.19	16.19	Gamma upper percentile	
Nickel *	11.6	N;G	11.72		13.13		Maximum	432
Zinc	96	LN;G		103.8	88.36	88.36	Gamma upper percentile	

All concentrations in mg/kg.

N = Normal; LN = lognormal; G = Gamma
UPL = Upper prediction limit

* Outliers Removed from Dataset
As - 35.8 mg/kg and 27 mg/kg
Ba - 178 mg/kg
Cd - 2 mg/kg
Cr - 18 mg/kg
Ni - 15 mg/kg

FIGURES

Figure 3-2 Ecological Conceptual Site Model

Exposure Medium	Exposure Route	
Sediment	Ingestion	X
	Direct contact	X
Administration of the second s		

X = Potential exposure route determined to be significant for this receptor; quantified in BERA.

Legend

Source: Weston Solutions, Inc, Figure 2-1 PEC QuOtient Summary

- Historic Surface Sediment Sample < Probable Effects Concentrations (PEC)
- Historic Subsurface Sediment Sample <PEC</p>
- Historic Surface Sediment Sample > PECs
- Historic Subsurface Sediment Sample > PECs
- July 2007 Sediment Sample Location
- July 2007 Reference Upstream Sediment Sample Location

APPENDIX A SITE PHOTOGRAPHS

PHOTO 1 PHOTOGRAPHER: Jeff Stofferahn

DATE: July 24, 2007

TIME: 0935

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Log jam on river immediately downstream of confluence with north ditch, between stations 01 and 02. Looking downstream (N).

PHOTO 4

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Collecting chemistry/bioassay sample at location SD-J2-001. Looking SW.

PHOTO 5

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Collecting macro invertebrate sample with Surber sampler at community survey Station 01. Looking W.

РНОТО 6

DATE: July 24, 2007 TIME: Approx. 1120
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Area of community survey Station 02, approximately 40 feet upstream (S) of sediment sample location SE/RC-9/1-002. Looking

SSW.

PHOTO 7

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Area of community survey Station 2, approximately 40 feet upstream (S) of sediment sample location SE/RC-9/1-002. Looking W.

РНОТО 8

PHOTOGRAPHER: Jeff Stofferahn

DATE: July 24, 2007 TIME: Approx. 1120
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of sediment sample SD-E3-003. Area of community survey Station 03 was located approximately 15 feet downstream

(N). Looking NW.

PHOTO 9
PHOTOGRAPHER: Jeff Stofferahn
TIME: Approx. 1230
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of sediment sample SD-E3-003. Area of community survey Station 03 located approx. 15 feet downstream (north), in foreground. Looking SW.

PHOTO 10
DATE: July 24, 2007
SUBJECT: Location of sediment sample SD-E3-003. Sampling at SE/RE-3/3-004 occurring in background. Looking S..

PHOTO 11

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Collecting sediment sample SD-C1-005. Looking W.

PHOTO 12
DATE: July 24, 2007
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Collecting sediment sample SD-A1-006. Looking W.

PHOTOGRAPHER: Mike Carlson TIME: 1325

PHOTO 13

PHOTOGRAPHER: Rhonda Regester TIME: Approx. 1400

DATE: July 24, 2007 TIME: Approx. 1400
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Oily sheen on water after collecting sediment samples at SD-E2-003.

PHOTO 14

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of community survey Station 04, approx. 20 feet downstream (north) of sample SE-RE-3-3-004 (stake in river, left side of photo). Looking SSW.

PHOTO 15

PHOTOGRAPHER: Jeff Stofferahn

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Location of community survey Station04, approx. 20 feet downstream (north) of sediment sample SE-RE-3-3-004 (stake in river, center of photo). Looking S.

PHOTO 16 DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of community survey Station 04, approx. 20 feet downstream (north) of sample sediment SE-RE-3-3-004 (near stake in river). Location of sediment sample SD-E2-003 at stake in background. Looking N.

TIME: 1405

PHOTO 17 PHOTOGRAPHER: Jeff Stofferahn DATE: July 24, 2007 TIME: 1535
SITE: Former Stanley Tool Site, Fowlerville, Michigan SUBJECT: Location of sediment sample SD-C1-005. Looking W.

PHOTO 18

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of sediment sample SD-C1-005. Looking SSW.

PHOTOGRAPHER: Jeff Stofferahn TIME: 1535

PHOTO 19
DATE: July 24, 2007
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of sediment sample SD-C1-005.

PHOTOGRAPHER: Jeff Stofferahn TIME: 1535

PHOTOGRAPHER: Jeff Stofferahn

DATE: July 25, 2007

TIME: 0945

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Reference sediment sample location SD-007, looking SW. Community survey station 07 collected approximately 100 feet upstream (S).

PHOTOGRAPHER: Jeff Stofferahn TIME: 0945

PHOTO 21

DATE: July 25, 2007

TIME: 0945

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Reference sediment sample location SD-007, looking NW. Community survey station 07 collected approximately 100 feet upstream (S).

PHOTO 22

DATE: July 25, 2007 TIME: 0945

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: View of lowland deciduous bottomland forest adjacent to River, east of reference sample location SD-007, looking E.

PHOTO 23 PHOTOGRAPHER: Jeff Stofferahn DATE: July 25, 2007 TIME: 0955
SITE: Former Stanley Tool Site, Fowlerville, Michigan SUBJECT: Community survey Station 07, looking WNW.

DATE: July 25, 2007 TIME SITE: Former Stanley Tool Site, Fowlerville, Michigan SUBJECT: Community survey Station 07, looking WNW.

PHOTOGRAPHER: Jeff Stofferahn

TIME: 0955

PHOTOGRAPHER: Jeff Stofferahn TIME: 0945

DATE: July 25, 2007

TIME: 0945

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: View of large open marsh in middle of bottomland forest, east of River, north of Interstate I-96.

DATE: July 25, 2007

TIME: 0945

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Collecting samples at Community Survey Station 08. This location is approximately 600 stream-feet downstream of sediment reference sample SD-008.

PHOTO 27 PHOTOGRAPHER: Jeff Stofferahn DATE: July 25, 2007 TIME: Approx. 1000
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of Community Survey Station 08. Looking SW.

PHOTO 28 PHOTOGRAPHER: Jeff Stofferahn DATE: July 25, 2007 TIME: Approx. 1000
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of Community Survey Station 08. Looking SW.

PHOTO 29 PHOTOGRAPHER: Jeff Stofferahn
DATE: July 25, 2007 TIME: Approx. 1000
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: View of river upstream of Community Survey Station 08. Looking S.

PHOTO 30 PHOTOGRAPHER: Jeff Stofferahn

DATE: July 25, 2007 TIME: Approx. 1015

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: River upstream of Community Survey Station 08 (further upstream from photo 29). Area of shallow riffles and floating and emergent vegetation. Looking ESE

PHOTO 31 PHOTOGRAPHER: Jeff Stofferahn

DATE: July 25, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: River upstream of Community Survey Station 08 (further upstream from photo 28). Area of shallow riffles and floating and emergent vegetation. Looking ESE

PHOTOGRAPHER: Jeff Stofferahn

DATE: July 25, 2007 TIME: Approx. 1015
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Close-up of vegetation in riffle area (*Valesnaria* and *Sagittaria*), upstream of Community Survey Station 08.

PHOTO 33 PHOTOGRAPHER: Jeff Stofferahn DATE: July 25, 2007 TIME: Approx. 1350
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: Location of sediment sample SE-RC-13/1-008. Looking W.

PHOTO 34 PHOTOGRAPHER: Jeff Stofferahn

DATE: July 25, 2007 TIME: Approx. 1430

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Location of Sediment sample SD-A1-006 near SW corner of the former Stanley site. Community Survey Station 06 placed approximately 40 feet north of sediment sample. Looking SSW.

PHOTOGRAPHER: Jeff Stofferahn

DATE: July 25, 2007 TIME: Approx. 1600
SITE: Former Stanley Tool Site, Fowlerville, Michigan
SUBJECT: View of former Stanley Site, looking E from river. Wetland area is a low portion of site that drains to the river.

PHOTO 36

DATE: July 24, 2007

SITE: Former Stanley Tool Site, Fowlerville, Michigan

SUBJECT: Photograph of wood frog (*Rana silvatica*) on emergent log along river bank near location of community survey station 04.

(Note, image is cropped and enlarged from electronic copy of original

film photograph)

APPENDIX B SEDIMENT CHEMISTRY DATA

Phone: (847) 808-7766 Fax: (847) 808-7772

09 August 2007

Lab ID: BQG0250

Pat Thomson Entact 1010 Executive Ct. Suite 280 Westmont, IL 60559

RE: Former Stanley Tools

Enclosed are the results of analyses for samples received by the laboratory on 07/27/07. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

James Knapp

Laboratory Director

Myra Kunas

Quality Assurance Manager

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Intact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

ANALYTICAL REPORT FOR SAMPLES

				foliated management and a statistical property of the stat
Sample ID	1.aboratory ID	Matrix	Date Sampled	Date Received
SD-J2-001	BQG0250-01	Soil	07/24/07 10:06	07/27/07 12:04
SD-J2-001/FD	BQG0250-02	Soil	07/24/07 10:06	07/27/07 12:04
SE/RC-9/1-002	BQG0250-03	Soil	07/24/07 10:15	07/27/07 12:04
SD-E2-003	BQG0250-04	Soil	07/24/07 10:52	07/27/07 12:04
SE/RE-3/3-004	BQG0250-05	Soil	07/24/07 11:34	07/27/07 12:04
SD-C1-005	BQG0250-06	Soil	07/24/07 13:05	07/27/07 12:04
SD-A1-006	BQG0250-07	Soil	07/24/07 13:26	07/27/07 12:04
SD-007	BQG0250-08	Soil	07/25/07 09:40	07/27/07 12:04
SE/RC-13/1-008	BQG0250-09	Soil	07/25/07 10:20	07/27/07 12:04

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Pecinis Approved by:

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Westmont, IL 60559

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported:

08/09/07 15:08

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-J2-001 (BQG0250-01) Soil Sa					CONTRACTOR	wa			
Arsenic	5.04	3.79	mg/kg dry		7070427	07/30/07	08/01/07	EPA 6010B	0/2/200 0
Cadmium	ND	0.757	"	н	ıı .	н	II.	ч	
Chromium	11.3	1.51	и	11	н	н	п	n	
Copper	14.7	3.79	н	u	н	н	н	19	
Nickel	8.04	3.79	н	D	н	n	н	D.	
Lead	4.16	3.79	ч	н	ч	.,	0	n	
Zinc	29.7	7.57	11	н	tr	11	v	н	QC
SD-J2-001/FD (BQG0250-02) Soil	Sampled: 07/24/07 10:06 Re	ceived: 07/	27/07 12:04						
Arsenic	6.28	3.53	mg/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0.706	н	н	н	0	н	IF	
Chromium	13.5	1.41	11	н	ıŗ	11	Tr.	н	
Copper	12.5	3.53	17	n	**	U	u	н	
Nickel	8.62	3.53	ji .	11	p	н	μ	ч	
Lead	4.18	3.53	и	p	u	н	и	п	
Zinc	31.4	7.06	н	н	п	n	н	Ħ	QC
SE/RC-9/1-002 (BQG0250-03) Soil	Sampled: 07/24/07 10:15 R	eceived: 07	7/27/07 12:04	4					
Arsenic	12.8	3.40	ıng/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0.679	н	0	n	н	μ	Ħ	
Chromium	13.2	1.36	н	п	п	н	н	н	
Copper	11.7	3.40	н	u u	н	н	н	ч	
Nickel	6.56	3.40	*1	n	м	н	n	11	
Lead	9.18	3.40	v	н	н	ų	н	11	
Zinc	29.6	6.79		и	n	17	0	n	QC

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Reconst

Phone: (847) 808-7766 Fax: (847) 808-7772

∃ntact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none]

Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-E2-003 (BQG0250-04) Soil Sampled:	07/24/07 10:52 Reco	eived: 07/27/	07 12:04			**************************************	· · · · · · · · · · · · · · · · · · ·		
Arsenic	10.7	4.10	mg/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0.821	"	н	"	17	n	**	
Chromium	112	1.64	н	41	0	ш	**	U	
Copper	133	4.10	"	U	н	n	п	н	
Nickel	43.5	4,10	п	н	n	17	ч	tr.	
Lead	789	4.10	и	u.	n	п	"	II.	
Zine	158	8.21	11	н	н	"	"	ч	QC
SE/RE-3/3-004 (BQG0250-05) Soil Sampl	ed: 07/24/07 11:34	Received: 07	//27/07 12:04	ŧ					
Arsenic	ND	3.35	mg/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0.669	н	I†	11	U	q	U.	
Chromium	7.27	1.34	ч	11	н	n	p	и	
Copper	9.17	3.35		н	4	η	н	ч	
Nickel	6.64	3.35		**	U	п	M.	IP.	
Lead	4.03	3.35	17	п	н	и	II .	н	
Zinc	27.3	6.69	H	н	41	11	4	ŋ	QC
SD-C1-005 (BQG0250-06) Soil Sampled:	07/24/07 13:05 Rec	eived: 07/27/	07 12:04						
Arsenic	10.9	4.10	mg/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0.820	0	U	н	н	11	0	
Chromium	77.2	1.64	п	н	н	н	16	н	
Copper	107	4.10	н	w	11	17	4	n	
Nickel	267	4.10	**	p.	н	n	11	U.	
Nickei									
Lead	11.2	4.10	n	н	н	ч	n	li,	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Laku
Approved by:

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Buffalo Grove, IL

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-A1-006 (BQG0250-07) Soil Sai	mpled: 07/24/07 13:26	Received: 07/27	07 12:04					***************************************	
Arsenic	8.64	4.24	mg/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	- 100 M
Cadmium	ND	0.848	U	u	n	17	n	п	
Chromium	133	1.70	U	U	н	u	н	10	
Copper	97.0	4.24	19	ur	н	U	и	ri .	
Nickel	57.9	4.24	"	**	п	11	"	ш	
Lead	15.1	4.24	11	•	M	44	м	n .	
Zinc	527	8.48	ш	41	н	ч	н	п	QC
	ed: 07/25/07 09:40 Rec	 			7070427	07/30/07	00/01/07	EDA 6010D	
Arsenic	ND	3.42	mg/kg dry	J	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0.683	н	11	н	4	и	н	
Chromium	3.27	1.37	п	1)	n	17	м	н	
Copper	ND	3.42	н	0	н	U	*	n	
Nickel	ND	3.42	п	U	н	U	н	п	
Lead	ND	3.42	"	11	и	v.	и	н	
Zinc	10.1	6.83	n	v	"	v	n	ri	Q
SE/RC-13/1-008 (BQG0250-09) Soil	Sampled: 07/25/07 10	9:20 Received:	07/27/07 12:)4					
Arsenic	7.11	3.39	mg/kg dry	1	7070427	07/30/07	08/01/07	EPA 6010B	
Cadmium	ND	0,678	n	t)	н	0	н	n	
Chromium	6.61	1.36	N	v	н	0	и	п	
Copper	9.29	3.39	"	17	и	17	н	п	
		3.39	н	**	и	0	,,	н	
Nickel	9.16	الرق. و							
Nickel Lead	9.16 4.64	3.39	N	et e	н	4	н	н	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & \ Approved by:

Robin Promisel For Jim Knapp

Page 5 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280 Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported:

08/09/07 15:08

Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Buffalo Grove, IL

SD-J2-001 (BQG0250-01) Soil Sampled: 07/24/07 10:06 Received: 07/27/07 12:04 PCB-1016 ND 45.0 ug/kg dry 10 7080076 08/06/07 08/08/07 EPA 8C PCB-1221 ND 45.0 " " " " " " " " " " " " " " " " " " "		restantited - Bullato Grove, 111												
PCB-1016	Analyte	Result	, -		Dilution	Batch	Prepared	Analyzed	Method	Note				
PCB-1221 ND 45.0 " " " " " " " " " " " " " " " " " " "	SD-J2-001 (BQG0250-01) Soi	Sampled: 07/24/07 10:06	Received: 07/27/	07 12:04			iniovan cia (1972) e P. (2000 e V.) e Ve	t and the state of						
PCB-12:12	PCB-1016	ND	45,0	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082					
PCB-1242 ND 45.0 " " " " " " " " " " " PCB-1248 ND 45.0 " " " " " " " " " " " " " " " " " " "	PCB-1221	ND	45.0	н	II.	II.	U	н	41					
PCB-1248 ND 45.0 " " " " " " " " " " " " " " " " " " "	PCB-1232	ND	45.0	н	**	17	11	n	ŧγ					
PCB-1284 ND 45.0 " " " " " " " " " " " " " " " " " " "	PCB-1242	ND	45.0	н	"	IP.	D	"	•					
PCB-1250 ND 45.0 " " " " " " " " " " " " " " " " " " "	PCB-1248	ND	45.0	h	"	n	11	17	17					
Surrogate: Tetrachloro-meta-xylene 35.5 % 20-110 " " " " " " " " " " " " " " " " " " "	PCB-1254	ND	45.0	н	0	-0	U	"	18					
Surrogate: Decachlorobiphenyl 37.7 % 10-110 " " " " " " " " " " " " " "	PCB-1260	ND	45.0	и	1)	D	и	н	TT.					
SD-J2-001/FD (BQG0250-02) Soil Sampled: 07/24/07 10:06 Received: 07/27/07 12:04	Surrogate: Tetrachloro-meta-x	vlene 35.5 %	20-110		19	17	"	и	"					
PCB-1016 ND 31.1 ug/kg dry 10 7080076 08/06/07 08/08/07 EPA 80 PCB-1221 ND 31.1 "	Surrogate: Decachlorobipheny	37.7 %	10-110		ú	и	μ	#	#					
PCB-1221 ND 31.1 "" " " " " " " " " " " " " " " " " "	SD-J2-001/FD (BQG0250-02)	Soil Sampled: 07/24/07 10:	06 Received: 07	/27/07 12:04	ı									
PCB-1232 ND 31.1 " " " " " " " " " " " " " " " " " "	PCB-1016	, · · ND	31.1	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082					
PCB-1242 ND 31.1 " " " " " " " " " " " " " " " " " "	PCB-1221	ND	31.1	n	19	n	н	· ·	0					
PCB-1248 ND 31.1 " " " " " " " " " " " " " " " " " "	PCB-1232	ND	31.1	"	19	IJ	и	**	11					
CB-1248	PCB-1242	ND	31.1	н	11	rı .	н	u	16					
### PCB-1242 ND 30.9 " " " " " " " " " " " " " " " " " " "	PCB-1248	ND	31.1	"	li .	n	н	U	D.					
Surrogate: Tetrachloro-meta-xylene 40.5 % 20-110 " " " " " " " " " " " " " " " " " " "	'CB-1254	ND	31.1	и	п	н	н	17	II.					
Surrogate: Decachlorobiphenyl 33.9 % 10-110 " " " " " " " " " " SE/RC-9/1-002 (BQG0250-03) Soil Sampled: 07/24/07 10:15 Received: 07/27/07 12:04 PCB-1016 ND 30.9 ug/kg dry 10 7080076 08/06/07 08/08/07 EPA 80 PCB-1221 ND 30.9 " " " " " " " " " " " " " " " " " " " " " " " " PCB-1232 ND 30.9 " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "	¿CB-1260	ND	31.1	н	11	н	п	"	11					
SE/RC-9/1-002 (BQG0250-03) Soil Sampled: 07/24/07 10:15 Received: 07/27/07 12:04 PCB-1016 ND 30.9 ug/kg dry 10 7080076 08/06/07 08/08/07 EPA 80 PCB-1221 ND 30.9 " " " " " " " " " " " " " " " " " " "	Surrogate: Tetrachloro-meta-x	vlene 40.5 %	20-110		п	н	<i>t</i>	и	ıı .					
PCB-1016 ND 30.9 ug/kg dry 10 7080076 08/06/07 08/08/07 EPA 80 PCB-1221 ND 30.9 """"""""""""""""""""""""""""""""""""	Surrogate: Decachlorobipheny	33.9 %	10-110		и	11	п	rr	"					
PCB-1221 ND 30.9 " <t< td=""><td>SE/RC-9/1-002 (BQG0250-03</td><td>) Soil Sampled: 07/24/07 10</td><td>:15 Received: 0'</td><td>7/27/07 12:0</td><td>4</td><td></td><td></td><td></td><td></td><td></td></t<>	SE/RC-9/1-002 (BQG0250-03) Soil Sampled: 07/24/07 10	:15 Received: 0'	7/27/07 12:0	4									
PCB-1232 ND 30.9 " " " " " " " " " " " " " " " " " " "	PCB-1016	ND	30.9	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082					
PCB-1242 ND 30.9 " " " " " " " " " " " " " " " " " " "	PCB-1221	ND	30.9	n	11	н	н	0	Œ					
PCB-1248 ND 30.9 " " " " " " " " " " " " " " " " " " "	PCB-1232	ND	30.9	n	н	ш	н	0	**					
PCB-1254 ND 30.9 " " " " " " " " " " " " " " " " " " "	PCB-1242	ND	30.9	ч	n	п	н	t y	44					
PCB-1254 ND 30.9 PCB-1260 ND 30.9 " " " " " " " " " " " " " " " " " " "	PCB-1248	· ND	30.9	ч	11	н	н	17	11					
Surrogate: Tetrachloro-meta-xylene 44,0 % 20-110 " " " " "	PCB-1254	ND	30.9	н	11	п	"	**	q					
Surrogate: 1etracmoro-meta-xytene 44.0 % 20-110	PCB-1260	ND	30.9	и	11	n	н	14	41					
Surrogate: Decachlorobiphenyl 37.1 % 10-110 " " " " " "	Surrogate: Tetrachloro-meta-x	vlene 44.0 %	20-110		н	"	н	н	"					
	Surrogate: Decachlorobipheny	I 37.1 %	10-110		и	"	•	n,	"					

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin & Peanis
Approved by:

Robin Promisel For Jim Knapp

Page 6 of 23

THE LEADER IN ENVIRONMENTAL TESTING Buffalo G

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280 Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-E2-003 (BQG0250-04) Soil Sampled:	07/24/07 10:52 Rec	eived: 07/27/	07 12:04						
PCB-1016	ND	29.9	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1221	ND	29.9	Į	n	11	U	0	n	
PCB-1232	ND	29.9	11	u	n	U	o o	n	
PCB-1242	ND	29.9	n	"	н	u u	17	н	
PCB-1248	ND	29.9	IJ	**	41	0	0	ii .	
PCB-1254	ND	29.9	и	n	н	U	o.	п	
PCB-1260	ND	29.9	U	n	e	U	er er	н	
Surrogate: Tetrachloro-meta-xylene	28.7 %	20-110		n	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	,	
Surrogate: Decachlorobiphenyl	30.1 %	10-110		н	st	"	"	n	
SE/RE-3/3-004 (BQG0250-05) Soil Sampl	ed: 07/24/07 11:34	Received: 07	//27/07 12:04	4					
PCB-1016	ND	26.3	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1221	ND	26.3	'n	ч	4	н	11	D	
PCB-1232	ND	26.3	n	**	4	n	17	D	
PCB-1242	ND	26.3	н	11	**	0	0	U	
PCB-1248	ND	26.3	п	*11	"	O.	44	0	
PCB-1254	. ND	26.3	н	n	n	0	16	U	
2CB-1260	ND	26.3	н	11	*1	U	•	u	
Surrogate: Tetrachloro-meta-xylene	39.7 %	20-110		0	n	"	"	"	
Surrogate: Decachlorobiphenyl	34.7 %	10-110		4	n	"	"	u .	
SD-C1-005 (BQG0250-06) Soil Sampled:	07/24/07 13:05 Rec	:eived: 07/27/	07 12:04						
PCB-1016	ND	29.2	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1221	ND	29.2	n	ч	4	17	"	"	
PCB-1232	ND	29.2	n	ч	и	••	n	ч	
PCB-1242	ND	29.2	п	н	и	0	н	н	
PCB-1248	ND	29.2	н	н	н		н	и	
PCB-1254	ND	29.2	н	н	я	11	н	н	
PCB-1260	ND	29.2	н	н	"	**	н	n	
Surrogate: Tetrachloro-meta-xylene	33.8 %	20-110		и	"	ır	n	n	
Surrogate: Decachlorobiphenyl	31.3 %	10-110		н	a	"	n	n	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

Reviewed & Ralin & Reconst

Robin Promisel For Jim Knapp

Page 7 of 23

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

∃ntact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project Number: [none]

Project: Former Stanley Tools

Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Polychlorinated Biphenyls by EPA Method 8082

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SD-A1-006 (BQG0250-07) Soil Sampled:	07/24/07 13:26 Rec	eived: 07/27/	07 12:04	***************************************		"cum			
PCB-1016	ND	29.6	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1221	ND	29.6	D	н	н	п	11	U	
PCB-1232	ND	29.6	п	ıτ	D	**	11	н	
PCB-1242	ND	29.6	4	18	н	11		41	
PCB-1248	ND	29.6	"	M	н	0	4	н	
PCB-1254	ND	29.6	н	11	17	н	п	н	
PCB-1260	ND	29.6	प	10	н	11	н	ч	
Surrogate: Tetrachloro-meta-xylene	31.2 %	20-110		н	n	"	"	. "	
Surrogate: Decachlorobiphenyl	29.2 %	10-110		11	"	"	π	"	
SD-007 (BQG0250-08) Soil Sampled: 07/2 PCB-1016	ND	42.2	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1016	ND	42.2	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1221	ND	. 42.2		n	n	11	•	11	
PCB-1232	ND	42.2	n	**	11	**	н	N	
PCB-1242	ND	42.2	11	11	м	4	н	ч	
PCB-1248	ND	42.2	le .	n	n	n .	11	11	
¹CB-1254	, ND	42.2	н	0	10	н	п	м	
.'CB-1260	ND	42.2	ч		н	н	"	н	
Surrogate: Tetrachloro-meta-xylene	46.3 %	20-110		н	n	"	"	"	
Surrogate: Decachlorobiphenyl	44.7 %	10-110		"	**	ø	n	Ħ	
SE/RC-13/1-008 (BQG0250-09) Soil Samp	oled: 07/25/07 10:20	Received: (07/27/07 12:	04					
PCB-1016	ND	28.9	ug/kg dry	10	7080076	08/06/07	08/08/07	EPA 8082	
PCB-1221	ND	28.9	17	н	н	11	**	11	
PCB-1232	ND	28.9	lt.	17	U	II .	18	u u	
PCB-1242	ND	28.9	н	11	U	п	H	н	
PCB-1248	ND	28.9	11	п	и	11	11	н	
PCB-1254	ND	28.9	н	н	17	u .	n	11	
PCB-1260	ND	28.9	н	**	n	н	H	n	
Surrogate: Tetrachloro-meta-xylene	47.7 %	20-110		н	0	"	4	и	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & (
Approved by:

Robin Promisel For Jim Knapp

Page 8 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280 Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-J2-001 (BQG0250-01) Soil	Sampled: 07/24/07 10:06	Received: 07/27/0	7 12:04		NAME OF TAXABLE PARTY.			***************************************	QC
Acenaphthene	ND	1320	ug/kg dry	10	7080074	08/06/07	08/06/07	EPA 8310	. —
Acenaphthylene	ND	2650	н	п	н	н	11	н	011
Anthracene	ND	1320	н	n	н	н	11	*1	
Benz (a) anthracene	ND	661	**	н	н	ų	ļi.	"	
Benzo (a) pyrene	ND	66.1	19	"	n	•	н	"	
Benzo (b) fluoranthene	ND	661	11	n	17	u	н	ti .	
Benzo (ghi) perylene	ND	1320	n	17	tr	μ	"	u.	
Benzo (k) fluoranthene	ND	1320	н	15	le .	н	4	rı.	
Chrysene	ND	1320	н	"	n	н	"	н	
Dibenz (a,h) anthracene	ND ND	66.1	н	u .	"	м	lr .	м	
Fluoranthene	ND	1320	"	n	н	н	μ	н	
Fluorene	ND	1320	н	н	н	t7	μ	н	
Indeno (1,2,3-cd) pyrene	ND ND	661	11	и	17	0	н	1)	011
Naphthalene	ND	1320	II.	н	•	· ·	м	IF.	
Phenanthrene	ND	1320	II.	**	•	U	н	11	
Pyrene	ND	1320	n	p	n .	м	H	ri	
Surrogate: Carbazole	54.6 %	30-110		11	"	n	и	a	

SD-J2-001/FD (BQG0250-02) Soil	Sampled: 07/24/07 10:06	Received: 07/	27/07 12:04						QC
Acenaphthene	ND	1410	ug/kg dry	10	7080074	08/06/07	08/06/07	EPA 8310	
Acenaphthylene	ND	2820	U	•	ч	"	н	O.	OU
Anthracene	ND	1410	10	4	ø	п	м	O	
Benz (a) anthracene	ND	706	р	**	U	U	и	D.	
Benzo (a) pyrene	ND	70.6	"	9	U	n	н	u .	
Benzo (b) fluoranthene	ND	706	"	U	U	н	"	D	
Benzo (ghi) perylene	ND	1410	н		"	4	v	н	
Benzo (k) fluoranthene	ND	1410	н	М	*	н	v	н	
Chrysene	ND	1410	51	н		н	D	н	
Dibenz (a,h) anthracene	ND	70.6	11	н	ч	If	U	н	
Fluoranthene	ND	1410	11	"	41	11	11	н	
Fluorene	ND	1410	II .	**	17	"	n	**	
Indeno (1,2,3-cd) pyrene	ND	706	п	17	16	II.	"	0	011
Naphthalene	ND	1410	н	II.	п	ш		U	
Phenanthrene	ND	1410	ч	Į.	н	н	н	II.	
Pyrene	ND	1410	*1	н	н	и	"	н	
Surrogate: Carbazole	69.9 %	30-110		и '	н	н	"	"	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin J. Peans Approved by:

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

∃ntact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project Number: [none] Project Manager: Pat Thomson Lab ID: BQG0250

Reported:

08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SE/RC-9/1-002 (BQG0250-03) Soil	Sampled: 07/24/07 10:15	Received: 07	/27/07 12:04	1		1.1 177 177	ACCOUNT OF THE PARTY OF THE PAR		QC
Acenaphthene	ND	1190	ug/kg dry	10	7080074	08/06/07	08/06/07	EPA 8310	
Acenaphthylene	ND	2370	0	н	17	н	н	ч	011
Anthracene	ND	1190	10	4	11	n	н	н	
Benz (a) anthracene	ND	593	n	ч	U	"	н	n	
Benzo (a) pyrene	78.7	59.3	N	•	11	ıı	**	**	O10
Benzo (b) fluoranthene	ND	593	н	1)	н	u	v	TI .	
Benzo (ghi) perylene	ND	1190	н	U		11	o	II.	
Benzo (k) fluoranthene	ND	1190	n	н	и	μ	11	u .	
Chrysene	ND	1190	•	и	***	t _t	II.	n	
Dibenz (a,h) anthracene	ND	59.3	1)	*	*11	n	· ·	N	
Fluoranthene	ND	1190	U	n	19	и	м	ч	
Fluorene	ND	1190	ĮI.	*1	IJ	н	н	n	
Indeno (1,2,3-cd) pyrene	ND	593	н	10	ĮI.	н	H	н	011
Naphthalene	ND	1190	н	"	п	0	u	11	
Phenanthrene	ND	1190	"	0	н	9	"	11	
Pyrene	ND	1190	n	н	н	U	u	or .	
Surrogate: Carbazole	55.9 %	30-110		н	ø	n	#	И	
SD-E2-003 (BQG0250-04) Soil Sa	impled: 07/24/07 10:52 Re	ceived: 07/27/	07 12:04						QC
Acenaphthene	ND	1640	ug/kg dry	10	7080074	08/06/07	08/07/07	EPA 8310	
Acenaphthylene	ND	3280	н	**	19	н	н	n	011
Anthracene	ND	1640	н	17	н	**	н	11	
Benz (a) anthracene	ND	821	n	1)	н	er	н	11:	
Benzo (a) pyrene	82.5	82.1	11	11	н	1)	ŧf	•	016
Benzo (b) fluoranthene	ND	821	44	11	н	n .	,,	0	
Benzo (ghi) perylene	ND	1640	0	н	н	U	11		
Down (Bill) por ficile	1.12								

TO 4.4		D CC 1	C1	TT
TestAmerica	-	винаю	Grove,	Ш

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin & Reanis Approved by:

Benzo (k) fluoranthene

Dibenz (a,h) anthracene

Indeno (1,2,3-cd) pyrene

Surrogate: Carbazole

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

Robin Promisel For Jim Knapp

ND

ND

ND

ND

ND

ND

ND

ND

ND

70.9 %

1640

1640

82.1

1640

1640

821

1640

1640

1640

30-110

Page 10 of 23

011

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

1010 Executive Ct. Suite 280

Project: Former Stanley Tools

Project Number: [none]

Lab ID: BQG0250

Westmont, IL 60559 Project Manager: Pat Thomson

Reported: 08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SE/RE-3/3-004 (BQG0250-05) Soil	Sampled: 07/24/07 11:34	Received: 07	/27/07 12:04	1		245/49/20077		2000000000	QC
Acenaphthene	ND	1200	ug/kg dry	10	7080074	08/06/07	08/07/07	EPA 8310	
Acenaphthylene	ND	2410	n	н	ч	н	o	ji .	OH
Anthracene	ND	1200	*1	n	*1	"	U	М	
Benz (a) anthracene	ND	602	**	"	"	"	и	М	
Benzo (a) pyrene	ND	60.2	II.	11		0	*	**	
Benzo (b) fluoranthene	ND	602	н	16	н	n		11	
Benzo (ghi) perylene	ND	1200	н	п	н	н	· ·	u .	
Benzo (k) fluoranthene	ND	1200	n	н	н	п	17	U	
Chrysene	ND	1200	o.	ч	9	11		н	
Dibenz (a,h) anthracene	ND	60.2	**	11	ti ti	17	11	ч	
Fluoranthene	ND	1200	н	p	п	ii .	н	n	
Fluorene	ND	1200	n	н	н	'n	et .	n	
Indeno (1,2,3-cd) pyrene	ND	602	"	н	н	н	ŧ+	II.	011
Naphthalene	ND	1200	47	н	11	"	1)	in .	
Phenanthrene	ND	1200	11	41	17	4	10	п	
Pyrene	ND	1200		n .	1)	ti .	H	и	
Surrogate: Carbazole	69.8 %	30-110			и	υ	л	r	
J	•								
SD-C1-005 (BQG0250-06) Soil Sa	ampled: 07/24/07 13:05 Re	ceived: 07/27/	07 12:04	1.5 100000000000			000-M	1142-144-22-2011	QC
Acenaphthene	ND	1640	ug/kg dry	10	7080074	08/06/07	08/07/07	EPA 8310	
Acenaphthylene	ND	3280	п	11	13	11	н	n	011
Anthracene	ND	1640	н	11	н	U	"	ч	
Benz (a) anthracene	ND	820	н	и	rt	и	н	11	
Benzo (a) pyrene	ND	82.0	н	н	н	н	н	1)	
Benzo (b) fluoranthene	ND	820	17	11	•	и	11	D.	
Benzo (ghi) perylene	ND	1640	п	17	•	н	U	11	
Benzo (k) fluoranthene	ND	1640	н	D	11	ч		н	
Chrysene	ND	1640	и	ų	н	0	н	н	
Dibenz (a,h) anthracene	ND	82.0	н	н	н	į i	я	н	
Fluoranthene	ND	1640	17	н	п	n	н	17	
Fluorene	ND	1640	P	н	•	н	**	OF .	
Indeno (1,2,3-cd) pyrene	ND	820	11	0	11	н	11	II.	OH
Naphthalene	ND	1640	н	п	и	ч	μ	н	
Phenanthrene	ND	1640	н	н	н	1)	М	н	
Pyrene	ND	1640	17	17	и	u	н	и	
Surrogate: Carbazole	67.7 %	30-110		0.5	"	n	"	"	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin J. Peanis Approved by:

Robin Promisel For Jim Knapp

Page 11 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280 Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-A1-006 (BQG0250-07) Soil	Sampled: 07/24/07 13:26	Received: 07/27/	07 12:04						QC
Acenaphthene	ND	1360	ug/kg dry	10	7080074	08/06/07	08/07/07	EPA 8310	100000
Acenaphthylene	ND	2730	н	11	U	"	*1	*11	011
Anthracene	ND	1360	,,	n	н	v	"	11	
Benz (a) anthracene	ND	682	11	•	tt.	п	п	и	
Benzo (a) pyrene	111	68.2	н	19	п	н	ч.	н	016
Benzo (b) fluoranthene	ND	682	"	м	и	**	17	II.	
Benzo (ghi) perylene	ND	1360	17	n	**	u u	H	н	
Benzo (k) fluoranthene	ND	1360	п	11		n	•	"	
Chrysene	ND	1360	n	"	n	v	47	tt.	
Dibenz (a,h) anthracene	ND	68.2	17	थ्र	11	u	it	U	
Fluoranthene	NE	1360	н	n	'n	и	Ħ	ч	
Fluorene	ND	1360	"	м		"	**	41	
Indeno (1,2,3-cd) pyrene	, , ND	682	1)	*1	*	п	п	U	011
Naphthalene	NE	1360	н	u	rı .	n	н	"	
Phenanthrene	ND	1360	н	и	н	ų	21	11	
Pyrene	ND	1360	μ	ч	11	р	n.	n.	
Surrogate: Carbazole	65.6 %	30-110		11	"	и	"	n	
SD-007 (BQG0250-08) Soil S	ampled: 07/25/07 09:40 Re	ceived: 07/27/07 1	12:04						QC
Acenaphthene	NE	1220	ug/kg dry	10	7080074	08/06/07	08/07/07	EPA 8310	
Acenaphthylene	ND	2440	1)	Ħ	н	11	11	19	01
Anthracene	NE	1220	н	1)		н	н	н	
Benz (a) anthracene	NE	610	н		и	н	м	н	
Benzo (a) pyrene	155	61.0	ø		и	•	o	**	010
Benzo (b) fluoranthene	NE	610	н	v	n .	п	и	11	
Benzo (ghi) perylene	NE	1220	n	ii .	н	и		н	
Benzo (k) fluoranthene	NE	1220	"	"	и	ч	17	ч	
Chrysene	NE		"	"	1)	н	"	17	
Dibenz (a,h) anthracene	NE		n	и	и		*	п	
Fluoranthene	NE	1220	41	н	*	η	ч	н	
Fluorene	NΩ	1220	п	O.	17	li.	11	"	
Indeno (1,2,3-cd) pyrene	NE		н	р	и	ч	н	п	011
Naphthalene	NI			"	н	•	н	n	
Phenanthrene	NE		н	•	••	D	D	u.	
Pyrene	ND		н	п	н	н	н	U	
Surrogate: Carbazole	73.0 %			H ?	н	"	"	n	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Peanis
Approved by:

Robin Promisel For Jim Knapp

Page 12 of 23

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none]

Lab ID: BQG0250

Reported:

08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310

Project Manager: Pat Thomson

TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SE/RC-13/1-008 (BQG0250-09) Sail	Sampled: 07/25/07 10:20	Received: 0	7/27/07 12:	04	-Mrkwn-:	MA AND STORY			QC
Acenaphthene	ND	1220	ug/kg dry	10	7080074	08/06/07	08/07/07	EPA 8310	
Acenaphthylene	ND	2440	н	17	0	11	e	17	011
Anthracene	ND	1220	ч	ш	11	U	**	O .	
Benz (a) anthracene	ND	610	•	м	н	п	9	n	
Benzo (a) pyrene	ND	61.0	D	и	н	"		н	
Benzo (b) fluoranthene	ND	610	н	"	"	м	"	и	
Benzo (ghi) perylene	ND	1220	н	17	41	11	н	н	
Benzo (k) fluoranthene	ND	1220	н	11	11	11	н	· · · · · · · · · · · · · · · · · · ·	
Chrysene	ND	1220	ч	п	н	п	19	D	
Dibenz (a,h) anthracene	ND	61.0	1)	*	n	и	u	n .	
Fluoranthene	ND	1220	U	•	н	"	· ·	и	
Fluorene	ND	1220	IJ	41	н	NT	н	п	
Indeno (1,2,3-cd) pyrene	ND	610	н	17	н	17	н	u	01
Naphthalene	ND	1220		n	17	l)	17	TI .	
Phenanthrene	ND	1220	"		u	n	***	D.	
Pyrene	ND	1220	17	*	n	н	11	п	
Surrogate: Carbazole	69.8 %	30-110		11	**	и	p	п	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Peanis Approved by:

Robin Promisel For Jim Knapp

Page 13 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

∃ntact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none] Project Manager: Pat Thomson Lab ID: BQG0250

08/09/07 15:08 Reported:

Percent Solids

TestAmerica - Buffalo Grove, IL

		Reporting	**						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-J2-001 (BQG0250-01) Soil Sample	d: 07/24/07 10:06 Receiv	ed: 07/27/0	7 12:04		30 1 	·		100 to	· · · · · · · · · · · · · · · · · · ·
% Solids	66.0	1.00	%	1	7070418	07/30/07	07/30/07	SW846 5035	
SD-J2-001/FD (BQG0250-02) Soil San	npled: 07/24/07 10:06 Re	ceived: 07/2	27/07 12:04	1					
% Solids	70.9	1.00	%	1	7070418	07/30/07	07/30/07	SW846 5035	
SE/RC-9/1-002 (BQG0250-03) Soil Sai	mpled: 07/24/07 10:15 R	eceived: 07/	27/07 12:0	14					
% Solids	73.6	1.00	%	Į.	7070418	07/30/07	07/30/07	SW846 5035	O
SD-E2-003 (BQG0250-04) Soil Sample	ed: 07/24/07 10:52 Receiv	ed: 07/27/0	7 12:04						
% Solids	60.9	1.00	%	1	7070418	07/30/07	07/30/07	SW846 5035	1.000
SE/RE-3/3-004 (BQG0250-05) Soil Sai	mpled: 07/24/07 11:34 Re	eceived: 07/	27/07 12:0	4					
% Solids	74.7	1.00	%	1	7070418	07/30/07	07/30/07	SW846 5035	
*D-C1-005 (BQG0250-06) Soil Sample	ed: 07/24/07 13:05 Receiv	/ed: 07/27/0	7 12:04						
% Solids	61.0	1.00	%	l	7070418	07/30/07	07/30/07	SW846 5035	***************************************
SD-A1-006 (BQG0250-07) Soil Sample	ed: 07/24/07 13:26 Receiv	ved: 07/27/(7 12:04						
% Solids	58.9	1.00	%	1	7070418	07/30/07	07/30/07	SW846 5035	
SD-007 (BQG0250-08) Seil Sampled:	07/25/07 09:40 Received:	07/27/07 1	2:04						
% Solids	73.2	1.00	%	1	7070418	07/30/07	07/30/07	SW846 5035	************
SE/RC-13/1-008 (BQG0250-09) Soil S	ampled: 07/25/07 10:20 I	Received: 0	7/27/07 12:	04					
% Solids	73.8	1.00	%]	7070418	07/30/07	07/30/07	SW846 5035	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Peanis Approved by:

Robin Promisel For Jim Knapp

Page 14 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

∄ntact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none]

Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

General Chemistry Parameters

TestAmerica - Nashville, TN

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SD-J2-001 (BQG0250-01) Soil Sampled:	07/24/07 10:06 Rece	eived: 07/27/0	07 12:04		******			· 1000000000 · 1000000000	1711-21-78.0
Total Organic Carbon	11900	1000	mg/Kg dry	l	7080412	08/02/07	08/03/07	SW846 9060M	
SD-J2-001/FD (BQG0250-02) Soil Sampl	ed: 07/24/07 10:06	Received: 07/	27/07 12:04	_					
Total Organic Carbon	12000	1000	mg/Kg dry	1	7080412	08/02/07	08/03/07	SW846 9060M	
SE/RC-9/1-002 (BQG0250-03) Soil Samp	led: 07/24/07 10:15	Received: 07	//27/07 12:04	\$					
Total Organic Carbon	10200	1000	mg/Kg dry	1	7080412	08/02/07	08/03/07	SW846 9060M	
SD-A1-006 (BQG0250-07) Soil Sampled:	07/24/07 13:26 Rec	eived: 07/27/	07 12:04					•	
Total Organic Carbon	20800	1000	mg/Kg dry	1	7080412	08/02/07	08/03/07	SW846 9060M	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Recons Approved by:

Robin Promisel For Jim Knapp

Page 15 of 23

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

1010 Executive Ct. Suite 280 Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Total Metals by EPA 6000/7000 Series Methods - Quality Control TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Resuit	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Lilliii	Cinto	Devel	Result	/VICEC		11110	LICEN'S	
Batch 7070427 - EPA 3050B		<u></u>							dayabaa	
Blank (7070427-BLK1)				Prepared: (07/30/07 A	nalyzed: 0	3/01/07			
Arsenic	ND	2.50	mg/kg wet							
Cadmium	ND	0.500	"							
Chromium	ND	1.00	н							
Copper	ND	2.50	n							
lickel	ND	2.50	н							
.cad	ND	2.50	н							
Zine	ND	5.00	14							
.CS (7070427-BS1)				Prepared: (07/30/07 A	nalyzed: 0	8/01/07			
Arsenic	19,0	2.50	mg/kg wet	20,0		94.8	82.7-110			
Cadmium	19.5	0.500	u	20.0		97.6	88.1-110			
Chromium	19.5	1.00	и	20.0		97.3	84.5-110			
Copper	19.7	2.50	н	20.0		98.7	86.1-110			
Nickel	20.2	2.50	-	20.0		101	90-110			
ead	39.7	2.50	ч	40.0		99.2	87.1-110			
Zinc	50.1	5.00	н	50.0		100	87.4-114			
Matrix Spike (7070427-MS1)	Sou	rce: BQG025	50-01	Prepared: 07/30/07 Analyzed: 08/01/07						
Zine	124	7.57	mg/kg dry	72.1	29.7	130	45.7-112			Н
Cadmium	26.4	0,757	D	28.8	ND	91.6	63-110			
Chromium	38.9	1.51	"	28.8	11.3	95.9	52.5-110			
Соррег	40.6	3.79	н	28.8	14,7	89.8	59.8-114			
Nickel	36.1	3.79	и	28.8	8.04	97.2	55.8-110			
Lead	58.0	3.79	н	57.7	4.16	93.4	51.5-110			
Arsenic	32.7	3.79	4	28.8	5.04	95.7	69,5-110			
Matrix Spike Dup (7070427-MSD1)	Sou	rce: BQG025	50-01	Prepared:	07/30/07 A	nalyzed: 0	8/01/07			
Arsenic	31.8	3.79	mg/kg dry	28.3	5.04	94.6	69.5-110	2.55	18.1	
Cadmium	25.1	0,757	1)	28.3	ND	88.5	63-110	5.38	17.7	
Chromium	38.9	1.51	U	28.3	11.3	97.7	52.5-110	0.0327	19.8	
Copper	42.4	3.79	n	28.3	14.7	98.1	59.8-114	4.50	21	
Nickel	36.8	3.79	н	28,3	8,04	102	55.8-110	2.02	23.4	
Lead	56.5	3.79	н	56.6	4.16	92.4	51.5-110	2.77	26,6	
Zinc	98.7	7.57	4	70.8	29.7	97.5	45.7-112	22.4	20.2	ŀ

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Peanis Approved by:

Robin Promisel For Jim Knapp

Page 16 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

Intact

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project: Former Stanley Tools

Project Number: [none]

Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control TestAmerica - Buffalo Grove, IL

		Reporting		Spike	Source	_,	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7080076 - EPA 3550B						4400 ₄₀₀ cp.				
Blank (7080076-BLK1)				Prepared: 0)8/06/07 A	nalyzed: 08	1/08/07			
PCB-1016	ND	25.0	ug/kg wet							
PCB-1221	ND	25.0	н							
PCB-1232	ND	25.0	u							
PCB-1242	ND	25.0	"							
PCB-1248	ND	25.0	11							
PCB-1254	ND	25.0	н							
PCB-1260	ND	25.0								
Surrogate: Tetrachloro-meta-xylene	11.9		"	32.8		36.4	20-110			
Surrogate: Decachlorobiphenyl	19.9		"	32.8		60.6	10-110			
LCS (7080076-BS1)				Prepared: 0)8/06/07 A	malyzed: 08	1/08/07			
PCB-1016	47,0	25.0	ug/kg wet	81.1		57.9	30-110			
PCB-1260	54.0	25,0	"	81.1		66.6	25-110			
`urrogate: Tetrachloro-meta-xylene	12.8		,	32.4		39.4	20-110			
arrogute: Decachlorohiphenyl	16.5		n	32.4		50.8	10-110			
Matrix Spike (7080076-MS1)	Sour	rce: BQG025	0-01	Prepared: 0	18/06/07 A	nalyzed: 08	V08/07			
PCB-1016	60.2	28.4		125	ND	48.3	20-110			
PCB-1260	55.3	28,4	41	125	NĐ	44.4	20-110			
Surrogate: Tetrachloro-meta-xylene	16.4		<i>"</i>	49.8		32.9	20-110			
Surrogate: Decachlorobiphenyl	16.4		"	49.8		33.0	10-110			
Matrix Spike Dup (7080076-MSD1)	Sour	rce: BQG025	0-01	Prepared: 0	18/06/07 A:	nalyzed: 08	708/07			
PCB-1016	72.7	31.6	ug/kg dry	129	ND	56.6	20-110	18.9	40	
PCB-1260	70.3	31,6	"	129	ND	54.7	20-110	24.0	40	
Surrogate: Tetrachloro-meta-xylene	19.0		, n	51.4		36.9	20-110			
			_							

51.4

TestAmerica - Buffalo Grove, IL

Surragate: Decachlorohiphenyl

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

10-110

39.2

Reviewed & Ralin J. Peanis Approved by:

Robin Promisel For Jim Knapp

20.2

Page 17 of 23

THE LEADER IN ENVIRONMENTAL TESTING

1380 Busch Parkway Buffalo Grove, Illinois 60089 Phone: (847) 808-7766 Fax: (847) 808-7772

∃ntact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280 Project Number: [none] Westmont, IL 60559 Project Manager: Pat Thomson Lab ID: BQG0250

Reported:

08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 - Quality Control TestAmerica - Buffalo Grove, IL

		24000		10000			1000000000			1000000
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7080074 - EPA 3550B						2010-1	
Blank (7080074-BLK1)				Prepared: 08/06/0)7 Analyzed: 08	/07/07	
Acenaphthene	ND	100	ug/kg wet				
Acenaphthylene	ND	200	**				
Anthracene	ND	100	п				
Benz (a) anthracene	ND	50.0	17				
Benzo (a) pyrene	ND	5.00	ri				
Benzo (b) fluoranthene	ND	50.0	н				
Benzo (ghi) perylone	ND	100	17				
Benzo (k) fluoranthene	ND	100	n				
Chrysene	ND	100	**				
Dibenz (a,h) anthracene	ND	5.00	н				
Fluoranthene	ND	100	ŋ				
Fluorene	ND	100	D				
Indeno (1,2,3-cd) pyrcne	ND	50.0	н				011
¹aphthalene	ND	100	44				
Phenanthrene	ND	100	н				
Pyrene	ND	100	н				
Surrogate: Carbazole	55.8		,	66.7	83.7	30-110	
LCS (7080074-BS1)				Prepared: 08/06/9	07 Analyzed: 08	3/07/07	
Accnaphthene	68,5	100	ug/kg wet	132	51.9	30-110	
Acenaphthylene	62.9	200	н	132	47.6	30-110	
Anthracene	75.3	100	11	132	57.0	40-110	
Benz (a) anthracenc	87.2	50.0	п	132	66.0	50-120	
Benzo (a) pyrene	106	5.00	ч	132	80.2	40-110	O10
Benzo (b) fluoranthene	79.0	50.0	D	132	59.8	50-120	
Benzo (ghi) perylene	84.9	100	"	132	64.3	40-115	
Benzo (k) fluoranthene	82.9	100	ч	132	62.8	50-120	
Chrysene	65.8	100	н	132	49.8	40-120	
Dibenz (a,h) anthracene	67.9	5.00		132	51.4	40-120	
Fluoranthene	80.2	100	U	132	60.7	40-110	
Fluorene	64.7	100	N	132	49.0	40-110	
Indeno (1,2,3-cd) pyrene	69.9	50.0	U	132	52.9	50-130	011
Naphthalene	75.5	100	н	132	57.2	40-110	
Phenanthrene	68.5	100	4	132	51.9	40-110	
Pyrene	87.0	100	U	132	65.9	40-115	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Peanis
upproved by: Approved by:

Robin Promisel For Jim Knapp

Page 18 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280 Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 - Quality Control TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7080074 - EPA 3550B	200	io week					***************************************			
LCS (7080074-BS1)				Prepared:	08/06/07 A	nalyzed: 08	/07/07			
Surrogate: Carbazole	41,1		ug/kg wet	66.0		62.3	30-110			
Matrix Spike (7080074-MS1)	Sou	rce: BQG025	0-01	Prepared:	08/06/07 A	nalyzed: 08	/07/07			
Aconaphthene	151	151	ug/kg dry	200	ND	75,2	20-120			
Acenaphthylene	131	303	n	200	ND	65.4	10-140			
Anthracene	170	151	17	200	ND	84.9	20-130			
Benz (a) anthracene	166	75.7	U	200	ND	82.7	25-120			
Benzo (a) pyrene	281	7.57	и	200	ND	141	40-120			H 01
Benzo (b) fluoranthene	161	75.7	"	200	ND	80.4	30-120			
Benzo (ghi) perylene	172	151	ч	200	286	NR	20-125			L
Benzo (k) fluoranthene	145	151	11	200	ND	72.2	30-120			
Chrysene	140	151		200	ND	69.7	30-120			
Dibenz (a,h) anthracene	129	7.57	н	200	ND	64.5	30-110			
Fluoranthene	180	151	"	200	ND	89.9	30-110			
luorene	143	151	н	200	ND	71.3	40-130			
Indeno (1,2,3-cd) pyrene	158	75.7	11-	200	ND	78.7	30-130			01
Naphthalene	143	151	п	200	ND	71.4	30-130			
Phenanthrene	157	151	n	200	ND	78.5	20-120			
Pyrene	206	151	н	200	ND	103	20-120			
Surrogate: Carbazole	68.6		п	100		68.5	30-110			
Matrix Spike Dup (7080074-MSD1)	Sou	ırce: BQG025	0-01	Prepared:	08/06/07 A	nalyzed: 08	3/07/07			
Acenaphthene	147	151	ug/kg dry	207	ND	71.2	20-120	2.28	40	
Acenaphthylene	122	303	н	207	ND	59.0	10-140	7.09	40	
Anthracene	164	151	н	207	ND	79.2	20-130	3.74	40	
Benz (a) anthracene	151	75.7	47	207	ND	73.2	25-120	8.96	40	
Benzo (a) pyrene	245	7.57	11	207	ND	118	40-120	14.0	40	Ol
Benzo (b) fluoranthene	147	75.7	h	207	ND	71.1	30-120	9.10	40	
Benzo (ghi) perylene	163	151	*	207	286	NR	20-125	5,36	40	L
Benzo (k) fluoranthene	136	151	*1	207	ND	65.9	30-120	6.01	30	
Chrysene	127	151	17	207	ND	61.2	30-120	9.75	40	
Dibenz (a,h) anthracene	121	7.57	н	207	ND	58.5	30-110	6.46	40	
Fluoranthene	163	151	н	207	ND	78.6	30-110	10.1	40	
Fluorene	138	151	н	207	NĐ	66.6	40-130	3.55	40	
Indeno (1,2,3-cd) pyrene	147	75.7	11	207	ND	71.2	30-130	6.82	40	01
Naphthalene	135	151	II.	207	ND	65.2	30-130	5.92	40	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin J. Reanis
Approved by:

Robin Promisel For Jim Knapp

Page 19 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Project Number: [none]

Lab ID: BQG0250

Westmont, IL 60559

Project Manager: Pat Thomson

Reported: 08/09/07 15:08

Polynuclear Aromatic Hydrocarbons by EPA Method 8310 - Quality Control

TestAmerica - Buffalo Grove, IL

Analyte	Resuit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7080074 - EPA 3550B		0.000		··· - 22011112000 · · · · · · ·			······································	- Marie Primary	· · · · · · · · · · · · · · · · · · ·	- Non-Non-
Matrix Spike Dup (7080074-MSD1)	Sour	ce: BQG025	0-01	Prepared: (08/06/07 A	nalyzed: 08	3/07/07			
Phenanthrene	148	151	ug/kg dry	207	ND	71.6	20-120	5.95	40	
Pyrene	189	151	u	207	ND	91.4	20-120	8.81	40	
Surrogate: Carbazole	71.9		п	103		69.6	30-110			

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin & Reanis Approved by:

Robin Promisel For Jim Knapp

Page 20 of 23

Phone: (847) 808-7766 Fax: (847) 808-7772

∃ntact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project Number: [none]
Project Manager: Pat Thomson

Lab ID: BQG0250

Reported: 0

08/09/07 15:08

Percent Solids - Quality Control TestAmerica - Buffalo Grove, IL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070418 - General Prep	+ + + + + + + + + + + + + + + + + + +		***************************************				• • • • • • • • • • • • • • • • • • • •			
Blank (7070418-BLK1)				Prepared 8	Analyzed:	07/30/07				
% Solids	ND	1.00	%							
Blank (7070418-BLK2)				Prepared 8	k Analyzed:	07/30/07				
% Solids	ND	1.00	%							
Blank (7070418-BLK3)				Prepared 8	k Analyzed:	: 07/30/07				
% Solids	ND	1.00	%							
Duplicate (7070418-DUP1)	Sour	ce: BQG0242	2-01	Prepared &	k Analyzed	07/30/07				
% Solids	84.9	1.00	%		85.4			0.619	20	
Ouplicate (7070418-DUP2)	Soui	ce: BQG0242	2-02	Prepared &	k Analyzed	: 07/30/07				
% Solids	83.2	1.00	%		80.1			3.86	20	
Duplicate (7070418-DUP3)	Sou	rce: BQG0242	2-03	Prepared &	k Analyzed	: 07/30/07				
% Solids	80.8	1.00	%		80.3			0.629	20	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin F. Pecnis Approved by:

Robin Promisel For Jim Knapp

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Project Number: [none]

Lab ID: BQG0250

Westmont, IL 60559

Project Manager: Pat Thomson

Reported: 08/09/07 15:08

General Chemistry Parameters - Quality Control

TestAmerica - Nashville, TN

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7080412 - NO PREP	***************************************							KONVES		HATTING TO SEE
Blank (7080412-BLK1)				Prepared: (08/02/07 A	nalyzed: 08	/03/07			
Total Organic Carbon	ND	1000	mg/Kg dry							
LCS (7080412-BS1)				Prepared: 0	08/02/07 A	nalyzed: 08	3/03/07			
Total Organic Carbon	29000	1000	mg/Kg dry	29900		97	90-110			
Duplicate (7080412-DUP1)	Sou	rce: NQG27	96-02	Prepared:	08/02/07 A	nalyzed: 08	3/03/07			
Total Organic Carbon	ND	1000	mg/Kg dry		ND				20	

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin J. Reanis Approved by:

Robin Promisel For Jim Knapp

Phone: (847) 808-7766 Fax: (847) 808-7772

Entact

Project: Former Stanley Tools

1010 Executive Ct. Suite 280

Westmont, IL 60559

Project Number: [none] Project Manager: Pat Thomson Lab ID:

BQG0250

Reported:

08/09/07 15:08

Notes and Definitions

The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source QC method acceptance criteria.

The check standard that corresponds to this sample met the SW846 method requirements. However, it should be noted that the 011 recovery for this individual compound in the check standard was below 85%.

The check standard that corresponds to this sample met the SW846 method requirements. However, it should be noted that the O10 recovery for this individual compound in the check standard was above 115%.

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

 $\Delta \Delta$

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

This quality control measurement is below the laboratory established limit. L

This quality control measurement is above the laboratory established limit. н

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

Note: All samples are reported on a wet weight basis unless otherwise noted.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab 1D: 999917160 TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261 TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001 TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010 TestAmerica--Dayton, OH NELAP Secondary Accreditation: Illinois #200008 TestAmerica-Watertown, WI NELAP Primary Accreditation: Illinois #100453 TestAmerica---Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica - Buffalo Grove, IL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Ralin S. Peconis Approved by:

Robin Promisel For Jim Knapp

Page 23 of 23

APPENDIX C BIOASSAY LABORATORY RESULTS

Client: ENTACT Project ID: ENTA0701

Client Sample ID: Stanley Tools CMIP Sample Period: 7/24/07-7/25/07

Report of Analysis: Whole Sediment Toxicity

Submitted To:
Mr. Jeff Stofferahn
ENTACT
1010 Executive Court, Suite 280
Westmont, IL60559
Prepared By:
Coastal Bioanalysts, Inc.
6400 Enterprise Court
Gloucester, VA 23061
(804) 694-8285
www.coastalbio.com
Contact: Peter F. De Lisle, Technical Director

Biological Summa	ary Data		La	boratory	Treatm	ent ID/C	lient Field	Sample	ID	
@		6	1	2	3	4	5	7	8	9
		Lab	SD-A1	SE/RC	SD-J2	SE/RE	SE/RC	SD.C1	SD	SD.E2
Species-Method	Endpoint	Ctrl	006	9/1-002	001	3/3-004	13/1-008	005	007	003
H. azteca	Survival (%):	94	91	91	95	96	95	79	94	0
EPA 100.1	Weight (mg):	0.534	0.405	0.437	0.365	0.372	0.343	0.293	0.417	NA

Significantly different (p = 0.05) from reference site SD 007. Growth in all treatments was significantly lower than in the laboratory control group. Survival in sediment SD.E2 003 was significantly depressed compared to both reference sites (SD 007 & SE/RC 13/1-008) and lab control.

Test Information Species-Method	Start Date/Time End Date/Time	Organism Source	Organism Age/Stage	Acclimation Temp.	Acclimation Water	Test Aerated?
H. azteca	8/1/07 1030	Ches.			Mod. Hard	
EPA 100.1	8/29/07 0800-1400	Cult.	7 days	23° C	Well Water	No

Sediment/Overlying Water Data					Sedim	ent ID				
	6	1	2	3	4	5	7	8	9	Overly.
Water Quality (Units)	Ctrl	006	9/1-002	001	3/3-004	13/1-008	005	007	003	Water
Arrival Temp (°C)	1	2	2	2	2	2	2	2	2	NA
Conductivity (µS/cm)	1									310
pH (S.U.)	6.25	6.91	6.81	7.02	6.78	6.85	6.86	6.88	6.85	7.98
Diss. Oxygen (mg/l)	1			li e	1		1	ļ		8.3
Total Hard (mg/l as CaCO ₃)				1	et .					110
Alkalinity(mg/lasCaCO ₃)	1		Tery.						1	124
Percent water	60.6	37.5	25.3	27.3	19.6	20.8	39.4	26.1	29.9	
Ammonia (mg/l NH ₃ -N)	5.6	8.4	2.7	1.1	1.2	2.7	6.7	4.4	4.4	ND

Overlying water = Moderately hard, carbon-filtered well water, renewed every 12 h.

Client: ENTACT Project ID: ENTA0701

Client Sample ID: Stanley Tools CMIP Sample Period: 7/24/07-7/25/07

Coastal	Bioana	lysts,	Inc
coastai	biouna	wsis,	(ruc

		·			Sediment II)			
Parameter	6	1	2	3	4	5	7	8	9
(units)	Ctrl	006	9/1-002	001	3/3-004	13/1-008	005	007	003
Temp.	22	22	22	22	22	22	22	22	22
(°C)	0.3	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3
D.O.	5.9	6.5	6.5	6.6	6.6	6.8	6.2	6.5	6.6
(mg/l)	1.3	0.8	0.7	0.7	0.7	0.6	0.8	0.7	1.0
pН	7.42	8.05	7.81	7.85	7.86	7.84	8.03	7.72	7.72
(S.U.)	0.14	0.23	0.11	0,35	0.11	0.11	0.14	0.11	0.14
Hardness	92	100	125	116	118	104	103	103	112
(mg/l)	_ 11	8.5	13	11	23	17	30	16	31
Alkalinity	159	161	147	133	157	156	142	142	138
(mg/l)	15	11_	32	23	21	16	3.5	16	12
NH3-N	0.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
(mg/l)	1.2	0	0	0	0	0	0	0	0
Cond.	310	312	296	301	300	301	311	302	300
(uS/cm)	25	43	24	21	23	23	25	21	22

96-h Acute Test QA/QC	Reference	Toxicant: KCl	Units: mg/l		
Species-Method (Ref. Test Date)	Data Source	Animal Source	% Control Survival	96-h LC50	95% C.L./A.L. for LC50
H. azteca EPA 100.1	RTT	Ches Cult	100	538	503-577
(8/1/07-8/5/07)	CC	CBI	100	523	367-679

Note: RTT = Reference Toxicant Test, CC = Control Chart, Cont. = Control group.

The results of analysis contained within this report relate only to the sample as received in the laboratory. This report shall not be reproduced except in full without written approval from the laboratory.

APPROVED:

Peter F. De Lisle, Ph.D.

Technical Director

CLOSSARY OF TERMS AND ABBREVIATIONS

A.L. (Acceptance Limits): The results of a given reference toxicant test are compared to the control chart mean value ± 2 standard deviations. These limits approximate the 95% probability limits for the "true" reference toxicant value.

C.L. (Confidence Limits): These are the probability limits, based on the data set and statistical model employed, that the "true value" lies within the limits specified. Typically limits are based on 95% or 99% probabilities.

Control chart: A cumulative summary chart of results from QC tests with reference toxicants. The results of a given reference toxicant test are compared to the control chart mean value and 95% Acceptance Limits (A.L.) (mean ± 2 standard deviations).

Client: ENTACT Project ID: ENTA0701

Client Sample ID: Stanley Tools CMIP

Sample Period: 7/24/07-7/25/07

LC50: The concentration of sample or chemical, calculated from the data set using statistical models, causing a 50% reduction in test organism survival. The lower the LC50, the more toxic the chemical or sample. Units are same as test concentration units. Note: The LC50 value must always be associated with the duration of exposure. Thus 48-h LC50, 96-h LC50, etc. are calculated.

N/A: Not applicable.

N/D: Not determined or measured.

Q.L.: Quantitation Limit. Level, concentration, or quantity of a target variable (analyte) that can be reported at a specified degree of confidence.

BASELINE INFO - H. AZTECA 28-D SEDIMENT TEST

Coastal Bioanalysts, Inc Form STF0098B Effective Date: 5/15/07

TEST ORGANISM INFO

Species:	Hyalella azteca				Acclimation: Water: WUI				
Source:	CBI Stock Cul	Itures:	<u> </u>			Temp. (°c): 23		
	Other: Cue	•		Ar	тival Date/	Condition:	8613		
Organism Age:	7-8-1	2635		-					
TEST DESIGN									
Test Chamber:	300 ml high-fo	orm lipless b	eaker	181	umination:	16:8 L:0) 10-20 uE/i	m²/s	
Sediment Vol:	100 ml			N	umber of R	eplicates/C	oncentratio	n: 12	
Water Volume:	~175 ml			N	umber of O	rganisms/R	eplicate: 1	0	
Renewal Vol:	~175 ml			F	eding Dur	ing Test: 1	mi YCT/cha	amber/day	
Renewal Cycle	Rene	ewals/_12_	hr	0	verlying wa	nter: <u> </u>	/ell SF	W	
Overlying wate	7.98 pH	(s.u.) <u>31</u>	<u>O</u> Conduct	. (uS) <u></u>	10 Har	dness (mg/l)	124 A	lkalinity (mg/	l)
	• 1								
TEST SET UP	ال وسد		•						
Set Up Date (Date				. Si	tart Up Date	e (Day 0):	_8/4)	
Set Up By (Initi	als): <u>ਿ</u>	+ 6B		Ti	me Animal	s Added:	1030	<u> </u>	
Initial Weights	(mg; 8 subsets	s of 10 orga	nisms):						
Pan # Tota	Tare Wt.	Not Wt.	Avg. Wt.	Pan #	Total Wt	Tare Wt.	Net Wt.	Avg. Wt.	
1 7.69	6184	0.85	ĺ	5	6.19	5.41	D 71		
2 7.43				6	624	6.39	0.83		•
	٧٤٠٥١ -	0.58							
3 617	5.18	0.99		7	5.93	V.93	1.00		1
3 617 4 55								0.089	mean
	5.(8	0.99	10.00 m	7 8	5.93 7.58	V,93 6,69	1.00	0.089	mean indi.l
4 55	5.(8 4.2) Check: Cali	გ. ৭৭ p. ๅ u b. True Wt.:		7 8 Uncerta	5.93 7.58 ninty: Δ.Δ.	4,93 6,69	0.1%	P80.0	

NOTES: The vate (1200 L) filled we delume water on day -2 for use duty that test.

Sample ID	Test Treatment I.D.	Sample ID	Test Treatment I.D.
5D-12.001	3		
SE/RC-9/1.002	2		
SD.€2.003	9		
SEIRE-3/3:00Y	<u> </u>		
5D.C1.005			
SD-A1.006	1		
50-007	8		
SE/RC-13/1-00% LAB COMMOL	S		
LAB COMMOL	6		

Assigned by:	0
Date:	67

DAY 28 GROWTH/SURVIVAL:

Treatment I.D.	Replicate ' Number	, y'Live	Park	Tot. Dry Vt. (mg)	Tare Wt. (mg)	Net Dry Wt. (mg)
	1	9		9.40	6.14	Je.
	2	8	2	9,27	5.75	
	3	9	3	9.36	5.23	
	4	10	4	9.56	5 56	
	5	10	5	9,99	6.13	
	6	8	V	10.90	1.39	
	7	10	7	9,38	5.73	
	8	9	8	8,83	5.69	
	1	/0	O	4.55	6.32	
	2	10	10	9.28	5.64	
	. 3	10	11	9,82	5.95	3
2	4	9	12	10,39	6.99	<u> </u>
2	5	8	13	10.61	5,88	8
	6	9) 4	10,23	5.90	
	7	9	15	9,29	5.34	
	8	8	16	10,81	6.70	B
	1	8	17	9,78	6.57	7
	2	9	18	9.98	6.25	
3	3	10	19	10,2 42	6.52	3
	4	10	90	10,22	7.04	<u>n</u>
	5	9	21	8,85	5.95	
	6	10	22	10,70	7.14	
	7	10	23	11.56	3.08	
	8	/0	24	11.10	7.41	1

Balance Callb. Check:	Calib. True Wt.:	19.00	_mg_Uncertainty: <u> </u>	<u>,</u>
Tare Weights: Measure	1 Calib.Wt.: <u>1</u>	. V O mg	Initials:	
Total Weights: Measure	d Calib.Wt.:	<u>,97 </u>	Initials: WB	
TEST (ND +	COLUMN BY	n of class S weigh	איי און איי איי און איי איי איי איי איי איי איי איי איי אי	standards

DAY 28 GROWTH/SURVIVAL:

Treatment	Replicate Number	#Live	Pan #	Joe Dry Wt (mg)	Tare Wt. (mg)	Net Dry Vit. (mg)
	1	10	25	11.27	7.58	
	2	9	2)	11.24	8.12	
	3	10	27	11. 45	3 02	
	4	10	28	10.27	6.97	
{ 4	5	12	29	10,38	6.74	
•	6	13	30	10,51	664	
	7	9	31	10,96	7.66	
	8	10	32	11.69	7.99	•
	1	7_	33	10.08	902	
<u> </u>	2	<u>/</u> 3	39	10.46	745	2
	3	13	35	11.51	3.37	5
	4	13	36	10.54	7.45	- \$\frac{1}{2}
S	5	10	37_	11,96	9-09	
	6	19	38	10.67	7.45	
{	7	9	3)	10.02	6.75	7,
	8	10	40	11.36	6.84	
}	1	9	41	11.57	6 90	3
}	2	9	<u>42</u>	10,24	5,95	- 5
	3	9	43	11.88	6.95	~
6	4	9	44	12.16	7.38	
	5	10	45	12.23	732	
	6	/0	46	12.44	6.83	,
	7	9	47	12.26	b.95	
	8	19	48	13.09	7.51	

Balance Calib. Check: Calib. True Wt.: 10.00 mg Uncertainty: 0.05
Tare Weights: Measured Calib.Wt.: 10.00 mg Initials: &
Total Weights: Measured Calib.Wt.: 9.47 mg Initials: 63
TEST END/LWAS B1 PB/PD @ D800-1400 8/29/07
True value from annual calibration verification of class S weights against NIST-traceable standards

DAY 28 GROWTH/SURVIVAL:

Treatment I.D.	Replicate Number	# Live	Pan #	Tot. Dry Wt. (mg)	Tare WL (mg)	Net Dry Wt. (mg)
	1	9	49	9.60	6.84	
	2		50	9.15	6:76	
	3	10	51	8.17	6.16	
	4	9	52	10.11	7.25	
7	5	7_	53	10,33	3.10	(
/	6	7	54	10,38	9.38	-
	7	4	55	8.75	7.36	1
	8	7	56	9.07	4.76	1
	4	/0_	57	9,83	5.80	
	2	10	53	10,99	7.57	2
	3	9	59	10.79	4.38	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	4	9	60	10,29	4.56	
0	5	8	اوا	9,75	6.20	3
	6	9	62	10.04	6.07	,
	7	10	43	10.25	6.78	
	8	/3	64	11.58	7.02	}
	1		لو ح		7.74	
<u> </u>	2	0	طما		7.45	
}	3	O_	47		7.07	
9	4	O	68		7.66	
/	5	O O	69		7.94	4-
	6	0	70		7.55	
	7	0	71		6.36	Ac-10,
	8	J	72_		8.88	

Balance Calib. Check: Calib. True Wt.: 10.00 mg Uncertainty: 0.05	_
·	
Tare Weights: Measured Calib.Wt.: 1000 mg Initials: 15	
Total Weights: Measured Calib.Wt.: 9.97 mg Initials: 6	
TEST END (LO-ME BA FD + FB OF 00 - 1900 8/19/07 True value from annual calibration verification of class S weights against NIST-traceable standard	ŝ

Test I.D	ENGA	0701	

		11. 916		An	nphipod 2	8-Day To	st/Surviva	I			
Start Date:	8/1/2007 1	030	Test ID:	ENTA070	1		Sample ID:				···········
End Date:	8/29/2007	1400	Lab ID:	CBI			Sample Ty	pe:			
Sample Date:			Protocol:	EPA Fresi	hwater Sec	liment	Test Speci	es:	H. azteca		
Comments:											
Conc-%	1	2	3	4	5	6	7	8			
CONTROL-6	0.9000	0.9000	0.9000	0.9000	1.0000	1.0000	0.9000	1.0000			
1	0.9000	0.8000	0.9000	1.0000	1.0000	0.8000	1.0000	0.9000			
2	1.0000	1.0000	1.0000	0.9000	0.8000	0.9000	0.9000	0.8000			
3	0.8000	0.9000	1.0000	1.0000	0.9000	1.0000	1.0000	1.0000			
4	1.0000	0.9000	1.0000	1.0000	1.0000	1.0000	0.8000	1.0000			
5	0.7000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9000	1.0000			
7	0.9000	1.0000	1.0000	0.9000	0.7000	0.7000	0.4000	0.7000			
8	1.0000	1.0000	0.9000	0.9000	0.8000	0.9000	1.0000	1.0000			
9	0.0000	0.0000			0.0000	0.0000	0.0000	0.0000			
		11000	T	ransform:				Rank	1-Talled	and control of the co	A
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		
CONTROL-6	0.9375	1.0000	1.3102	1.2490	1.4120	6.438	8				
1	0.9125	0.9733			1.4120	10.042	8	63.00	45.00		
2	0.9125	0.9733	1.2747	1.1071	1.4120	10.042	8	63.00	45.00		
3	0.9500	1.0133	1.3332	1.1071	1.4120	8.799	8	73.50	45.00		
4	0.9625	1.0267	1.3535	1.1071	1.4120	8.476	8	77.50	45.00		
5	0.9500	1.0133	1.3390	0.9912	1.4120	11.328	8	77.50	45.00		
7	0.7875	0.8400	1.1225		1.4120	22.412	•	54.00	45.00		
8	0.9375	1.0000	1.3128	1.1071	1.4120	8.821	8	69.50	45.00		
9	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	88				
Auxillary Test					100		Statistic	W	Critical	Skew	Kurt
Kolmogorov D					p <= 0.01)		1.60002		1.035	-0.721	1.02145
Bartlett's Test					,		10.9749		18.4753	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	******
Hypothesis To			NOEC	LOEC	ChV	TU					·
Steel's Many-C	One Rank	Test	8	9	8.48528	12.5					

Sample Date: Sample Date: Comments: Conc-% CONTROL-6 0 1 0 2 0	/2007 1 9/2007 1 0.5189 0.3622 0.3450 0.4013	1400	Lab ID:	ENTA0701 CBI EPA Fresh 0.5311	water Sec		Sample ID Sample Ty Test Spec	/pe: ies:	H. azteca			mak (Science of the Control of the C
Sample Date: Comments: Conc-% CONTROL-6 0 1 0 2 0	1 0.5189 0.3622 0.3450	2 0.4767 0.4400	Protocol: 3 0.5478	EPA Fresh 4 0.5311	5	liment	Test Spec	ies:	H. azteca			_intermedict-
Conc-% CONTROL-6 0. 1 0 2 0).5189).3622).3450	2 0.4767 0.4400	3 0.5478	0.5311	5		200		H. azteca		·	
Conc-% CONTROL-6 0. 1 0 2 0).5189).3622).3450	0.4767 0.4400	0.5478	0.5311		8			- Normania de la composición della composición d			
CONTROL-6 0 1 0 2 0).5189).3622).3450	0.4767 0.4400	0.5478	0.5311		6	7		- Numuru- Irun'		dental and the second	Deminio (- T
1 0 2 0).3622).3450	0.4400			0.4040			8				
2 0	.3450		0.4589		0.4910	0.5610	0.5900	0.5580				
		0.3640		0.4000	0.3860	0.4763	0.3650	0.3489				
2 2	1.4013	/ _	0.3870	0.3778	0.5913	0.4811	0.4389	0.5138				
3 0	,,,,,,	0.4144	0.3900	0.3180	0.3222	0.3560	0.3480	0.3690				
4 0).3690	0.3467	0.3430	0.3800	0.3640	0.3870	0.4125	0.3700				
5 0).2943	0.3010	0.3140	0.3090	0.3870	0.3220	0.3633	0.4520				
7 0	0.3067	0.2390	0.2010	0.3178	0.3186	0.2857	0.3475	0.3300				
8 0	.4030	0.3420	0.4900	0.4144	0.4438	0.4433	0.3470	0.4560				
			4600000	Transform	identification of the control of the				1-Tailed			
		N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
).5343	1.0000	0.5343	0.4767	0.5900	7.075	_					
	.4047	0.7573	0.4047	0.3489	0.4763	11.877	8	5.062	2.394	0.0613		
*2 0).4373	0.8185	0.4373	0.3450	0.5913	19.599	8	3,786	2.394	0.0613		
*3 0).3649	0.6829	0.3649	0.3180	0.4144	9.722	-	6.616	2.394	0.0613		
*4 0).3715	0.6953	0.3715	0.3430	0.4125	6.008	8	6.356	2.394	0.0613		
*5 0).3428	0.6416	0.3428	0.2943	0.4520	15.902	8	7.477	2.394	0.0613		
*7 0).2933	0.5489	0.2933	0.2010	0.3475	16.915	8	9,411	2.394	0.0613		
*8 0).4174	0.7813	0.4174	0.3420	0.4900	12.476	8	4.563	2.394	0.0613		
			·								······································	- <u></u>
Auxiliary Tests	···			· ···		······································	Statistic	- Control	Critical		Skew	Kurt
Kolmogorov D Tes					.01)		0.48462		1.035		0.43605	0.55686
Bartlett's Test indi					en a a e		13.3348	7 1 65 00	18.4753			
Hypothesis Test	(1-tall,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			<1	1			0.06132	0.11476	0.04151	0.00262	2.9E-11	7, 56

						8-Day Te	est/Surviva	<u>al</u>			
Start Date:	8/1/2007	0:30	Test ID:	ENTA070	1		Sample ID	;			
End Date:	8/29/2007	14:00	Lab ID:	CBI			Sample Ty	rpe:			
Sample Date:			Protocol:	EPA Fresh	water Sec	diment	Test Speci	es:	H. azteca		
Comments:			7. 10000-11 100		·····	·				·····	
Conc-%	1	2	3	4	5	6	7	8	2001,-5		
SD007-8	1.0000	1.0000	0.9000	0.9000	0.8000	0.9000	1.0000	1.0000			
1	0.9000	0.8000			1.0000	0.8000	1.0000	0.9000			
2	1.0000	1.0000			0.8000	0.9000	0.9000	0.8000			
3	0.8000	0.9000		1.0000	0.9000	1.0000	1.0000	1.0000			
4	1.0000	0.9000	1.0000	1.0000	1.0000	1.0000	0.8000	1.0000			
5	0.7000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9000	1.0000			
7	0.9000	1.0000	1.0000	0.9000	0.7000	0.7000	0.4000	0.7000			
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
			T	ransform:	Arcsin Sc	juare Ro	ot	Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		_
SD007-8	0.9375	1.0000	1.3128	1.1071	1.4120	8.821	8	·	·	0000-100	
1	0.9125	0.9733	1.2747	1.1071	1.4120	10.042	8	62.50	46.00		
2	0.9125	0.9733	1.2747	1.1071	1.4120	10.042	8	62.50	46.00		
3	0.9500	1.0133	1.3332	1.1071	1.4120	8.799	8	71.50	46.00		
4	0.9625	1.0267	1.3535	1.1071	1.4120	8.476	8	75.00	46.00		
5	0.9500	1.0133	1.3390	0.9912	1.4120	11.328	8	74.50	46.00		
7	0.7875	0.8400	1.1225	0.6847	1.4120	22.412	8	53.00	46.00		
9	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	8				
Auxillary Tes	ts		<u></u>		·	*************************************	Statistic		Critical	Skew	Kurt
Kolmogorov D	Test indic	ates non	-normal di	stribution (s	<= 0.01)		1.61507	· V	1.035	-0.7359	0.83771
Bartlett's Test					•		8.01507		16,8119		
Hypothesis T			NOEC	LOEC	ChV	TU			· · · · · · · · · · · · · · · · · · ·		
Steel's Many-			7	9	Contract of the Contract of th	14.2857		500 to a seguing See			

				An	phipod 2	28-Day Te	st/Growti	h	
Start Date:	8/1/2007 1	10:30	Test ID:	ENTA0701			Sample ID);	
End Date:	8/29/2007	14:00	Lab ID:	CBI			Sample Ty	/pe:	
Sample Date:			Protocol:	#NAME?		-	Test Spec	ies:	H. azteca
Comments:									
Conc-%	1	2	3	4	5	6	7	8	
SD007-8	0.4030	0.3420	0.4900	0.4144	0.4438	0.4433	0.3470	0.4560	
1	0.3622	0.4400	0.4589	0.4000	0.3860	0.4763	0.3650	0.3489)
2	0.3450	0.3640	0.3870	0.3778	0.5913	0.4811	0.4389	0.5138	,
3	0.4013	0.4144	0.3900	0.3180	0.3222	0.3560	0.3480	0.3690)
4	0.3690	0.3467	0.3430	0.3800	0.3640	0.3870	0.4125	0.3700)
5	0.2943	0.3010	0.3140	0.3090	0.3870	0.3220	0.3633	0.4520)
7	0.3067	0.2390	0.2010	0.3178	0.3186	0.2857	0.3475	0.3300)
,	0.5007	0.2330	0.2010	0.0170	0,3100	0,2001	0.5719	0.0000	,

				Transform	n: Untran	sformed			1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
SD007-8	0.4174	1.0000	0.4174	0.3420	0.4900	12.476	8			
1	0.4047	0.9694	0.4047	0.3489	0.4763	11.877	8	0.484	2.359	0.0623
2	0.4373	1.0477	0.4373	0.3450	0.5913	19.599	8	-0.753	2.359	0.0623
3	0.3649	0.8741	0.3649	0.3180	0.4144	9.722	8	1.989	2.359	0.0623
4	0.3715	0.8900	0.3715	0.3430	0.4125	6.008	8	1.737	2.359	0.0623
*5	0.3428	0.8213	0.3428	0.2943	0.4520	15.902	8	2.823	2.359	0.0623
*7	0.2933	0.7026	0.2933	0.2010	0.3475	16.915	8	4.698	2.359	0.0623

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Kolmogorov D Test indicates norr	nal distribu	tion (p >	0.01)		0.41347		1.035		0.46543	0.52366
Bartlett's Test indicates equal vari	iances (p =	0.06)			12.2192		16.8119			_
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV_	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	4	5	4.47214	25	0.06235	0.14936	0.01919	0.00279	2.5E-05	6, 49

				Ar	nphipod :	28-Day T	est/Growt	h			
Start Date:	8/1/2007	10:30	Test ID:	ENTA0701	- 21 Verminer telliger per registrere		Sample ID);			
End Date:	8/29/2007	14:00	Lab ID:	CBI			Sample Ty	/pe:			
Sample Date:			Protocol:	EPA Frest	water Sec	diment	Test Spec	ies:	H. azteca		
Comments:											
Conc-%	1	2	3	4	5	6	7	8			
ERC131008-5	0.2943	0.3010	0.3140	0.3090	0.3870	0.3220	0.3633	0.4520			
1	0.3622	0.4400	0.4589	0.4000	0.3860	0.4763	0.3650	0.3489			
2	0.3450	0.3640	0.3870	0.3778	0.5913	0.4811	0.4389	0.5138			
3	0.4013	0.4144	0.3900	0.3180	0.3222	0.3560	0.3480	0.3690			
4	0.3690	0.3467	0.3430	0.3800	0.3640	0.3870	0.4125	0.3700			
7	0.3067	0.2390	0.2010	0.3178	0.3186	0.2857	0.3475	0.3300			
8	0.4030	0.3420	0.4900	0.4144	0.4438	0.4433	0.3470	0.4560			
				Transform	n: Untran	sformed			1-Tailed		<u> </u>
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
ERC131008-5	0.3428	1.0000	0.3428	0.2943	0.4520	15.902	8				
1	0.4047	1,1803	0.4047	0.3489	0.4763	11.877	8	-2.339	2.359	0.0623	
2	0.4373	1.2757	0.4373	0.3450	0.5913	19.599	8	-3.576	2.359	0.0623	

				Transforr	n: Untran	sformed		_	1-Talled	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
ERC131008-5	0.3428	1.0000	0.3428	0.2943	0.4520	15.902	8			
1	0.4047	1.1803	0.4047	0.3489	0.4763	11.877	8	-2.339	2.359	0.0623
2	0.4373	1.2757	0.4373	0.3450	0.5913	19.599	8	-3.576	2.359	0.0623
3	0.3649	1.0643	0.3649	0.3180	0.4144	9.722	8	-0.834	2.359	0.0623
4	0.3715	1.0837	0.3715	0.3430	0.4125	6.008	8	-1.086	2.359	0.0623
7	0.2933	0.8555	0.2933	0.2010	0.3475	16.915	8	1.875	2.359	0.0623
8	0.4174	1.2176	0.4174	0.3420	0.4900	12.476	8	-2.823	2.359	0.0623

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Kolmogorov D Test indicates nor	mal distribu	tion (p > 0	.01)		0.41347		1.035		0.46543	0.52366
Bartlett's Test indicates equal var	riances (p =	0.06)			12.2192		16.8119			
Hypothesis Test (1-tall, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	8	>8		12.5	0.06235	0.18186	0.01919	0.00279	2.5E-05	6, 49

Antifiar A rapra		,			st/Survival	-Day Te	phipod 28	Am			······································	
End Date: 8/29/2007 14:00			animes vii						Test ID: E	0:30	3/1/2007 1	Start Date:
Comments: Conc-% 1				oe:	Sample Typ	;		:BI	ab ID: (
Conc-% 1 2 3 4 5 6 7 8			I. azteca	es:	Test Specie	ment	water Sedi	PA Fresh	Protocol: E	F		Sample Date:
Conc-% Mean N-Mean Mean Min Max CV% N Critical					·							Comments:
1 0.9000	**************************************	<u></u>	<u> </u>	and the same of the same								Conc-%
2 1.0000 1.0000 1.0000 0.9000 0.8000 0.9000 0.9000 0.8000 3 0.8000 0.9000 1.0000 1.0000 0.9000 1.0000 1.0000 1.0000 4 1.0000 0.9000 1.0000 1.0000 1.0000 1.0000 0.8000 1.0000 7 0.9000 1.0000 1.0000 0.9000 0.7000 0.7000 0.4000 0.7000 8 1.0000 1.0000 0.9000 0.9000 0.8000 0.9000 1.0000 1.0000 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Transform: Arcsin Square Root Rank 1-Tailed Conc-% Mean N-Mean Mean Min Max CV% N Sum Critical ERC131008-5 0.9500 1.0000 1.3390 0.9912 1.4120 11.328 8 1 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 2 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 3 0.9500 1.0000 1.3332 1.1071 1.4120 8.799 8 65.00 46.00 4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.1588 0.000 8											0.7000	ERC131008-5
3 0.8000 0.9000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8000 1.0000 0.700											0.9000	1
4 1.0000 0.9000 1.0000 1.0000 1.0000 1.0000 0.8000 1.0000 0.70000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000											1.0000	2
7 0.9000 1.0000 1.0000 0.9000 0.7000 0.7000 0.4000 0.7000 0.7000 8 1.0000 1.0000 0.9000 0.9000 0.9000 0.00000 0.00000 0.00000 0.0000 0.										0.9000	0.8000	3
8 1.0000 1.0000 0.9000 0.9000 0.8000 0.9000 1.0000 1.0000 1.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.									1.0000	0.9000	1.0000	4
9 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000									1.0000		0.9000	7
Conc-% Mean N-Mean Mean Min Max CV% N Sum Critical								0.9000		1.0000	1.0000	8
Conc-% Mean N-Mean Min Max CV% N Sum Critical ERC131008-5 0.9500 1.0000 1.3390 0.9912 1.4120 11.328 8 1 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 2 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 3 0.9500 1.0000 1.3332 1.1071 1.4120 8.799 8 65.00 46.00 4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9
Conc-% Mean N-Mean Min Max CV% N Sum Critical ERC131008-5 0.9500 1.0000 1.3390 0.9912 1.4120 11.328 8 1 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 2 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 3 0.9500 1.0000 1.3332 1.1071 1.4120 8.799 8 65.00 46.00 4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588		, ·, ·, ·, ·	1.Tailed	Pank		usta Da	Arasin Ca		T.			Consequence of the Consequence o
ERC131008-5										NI 88-0-	20	
1 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 2 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 3 0.9500 1.0000 1.3332 1.1071 1.4120 8.799 8 65.00 46.00 4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew			<u> </u>					Contract to the second	40th - 12 thin - 1m -			
2 0.9125 0.9605 1.2747 1.1071 1.4120 10.042 8 57.50 46.00 3 0.9500 1.0000 1.3332 1.1071 1.4120 8.799 8 65.00 46.00 4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew			46 OO	57 50								
3 0.9500 1.0000 1.3332 1.1071 1.4120 8.799 8 65.00 46.00 4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew												•
4 0.9625 1.0132 1.3535 1.1071 1.4120 8.476 8 68.50 46.00 7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew												
7 0.7875 0.8289 1.1225 0.6847 1.4120 22.412 8 50.50 46.00 8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew							• • • •					-
8 0.9375 0.9868 1.3128 1.1071 1.4120 8.821 8 61.50 46.00 9 0.0000 0.0000 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew												•
9 0.0000 0.0000 0.1588 0.1588 0.000 8 Auxiliary Tests Statistic Critical Skew												-
Auxiliary Tests Statistic Critical Skew			40,00	01.00								
					•	0.000	0.1500	0.1300	0.1500	0.0000	0.0000	9
4.00	Kurt	Skow			Statistic	791-					s	Auxiliary Tes
Kolmogorov D Test indicates non-normal distribution (p <= 0.01) 1.61507 1.035 -0.735	0.83771	-0.7359	1.035		1.61507		<= 0.01)	tribution (p	normal dis	ates non-	Test indic	Kolmogorov D
Bartlett's Test indicates equal variances (p = 0.24) 8.01507 16.8119	· · · · · · · · · · · · · · · · · · ·		16.8119		8.01507							
Hypothesis Test (1-tail, 0.05) NOEC LOEC ChV TU			Was a second sec					LOEC				
Steel's Many-One Rank Test 8 9 8.48528 12.5						12.5	8.48528	9	8	Test	One Rank	Steel's Many-

CHA

TEST I.D.

ZZJDM

Day of Week (MINE): -• 80 is 80 0 8 Ø OB de \mathcal{E} نوا روا 0 Diss. Oxygen (mg/l) (h ار ا 6 P C 7,5 ۲ T 5 5 3 4.3 <u>چ</u> ن 5 40.00 48.4 805 8.03 7.95 7.41 3 2 9 X 7 2 2 3 7.00 1,85 7.85 PH (S.U.) 730 1 8 8 7.49 17) 25.5 58.1 3 1.80 8 7.38 h 3

7

Interest	Date:	Replicate # Measured:	Ø.	2	*	×		^	2		Treatment I.D.	
			لد مدا	338	3/7	341	W 35	334	331	350	Day o	COP (S)
5	401118	CJ	CC	رورو	92	Ce	CE	မမ	e e	gs CS	Day 0	
PB	8/2/87	6	72	22	22	7	22	20	22-	a	Day 1	The state of the s
E	8/3/8	€	20	0	0)	ر د	9) 83	<u>စ</u>	S	0	Day 2	
5	81 Y 18		26	00	200	Re	Re	n n	S U	٠.	Day 3	emperature (
62	8/5/07	N	80 80	22	33	68	60	85 80	<i>8</i> 2	s) So	Day 4	C
5	81 W/O)	7	90	23	23	93	23	93	87 67	وه ده	Day 5	
67	SILVE	4	0 1	0 0	Re	20	9)	9	0	000	Day 6	

TEST WEEK 1

Coastal Bioanalysts, Inc. Form STF0099B
Effective Date 5/15/07

TEST WEEK 1

		Di	ss. Oxygen (m	g/I)		pH (S.U.)	
	Day of Week (MWF):	W	F	m	W	F	M
	Test Day:	0	2_	5	0	2_	5
T	9	8, 3	8,3	4.8	7.87	7.72	2.86
R			\	\			\
E				1			
A							
T							
M							
N							
T				1			

TEST I.D. CHA

TEST WEEK 2

	Cond. (uS)			1	femperature (°	C)		
Treatment I.D.	Day 7	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13
	275	22	22	<i>მ</i> ე	22	23	22	23
2	224	29	72	26	82	<i>2</i> .a	33	93
	229	72	22	66	22	32	33	93
4	280	32	72	9.9	22	93	122	33
5	293	22	72	95	23	32	99	23
<u> </u>	269	92	22	97	28	28	122	23
7	278	35	22	99	22	23	22	23
8	290	39	22	122	23	23	39	23
Replicate # Measured:		7	2	4	3			5
Date:		8/8/02	819107	6/14/07	8/11/07	8/12/07	8/17/12	8/14/12
Initials:	·	len	PRIM	PP160	es	C5	CO	un

		Di	ss. Oxygen (n	ıg/l)		р Н (S.U.)	***************************************
	Day of Week (MWF):	w	F	m	W	F	m
	Test Day:	7	9	12_	2	9	n
T		6.7	6.1	4.3	7.73	2.79	7.86
R	2	6.7	6.4	4.5	2.68	2.78	2.80
E	3	4.7	63	4.5	7.20	7.66	2.89
A	Y	4.8	6.3	4.6	2.75	1.80	2.83
T	5	6.8	6.6	6.8	2.74	7.81	2.29
M	b	5.5	64	4.4	225	7,16	2.46
N	7	4.5	5.5	w .3	7.85	7.87	8.06
-	8	45	لىن	4.6	2.64	2.71	7.44

TEST WEEK 2

		i i i i i i i i i i i i i i i i i i i	ss. Oxygen (m) //) ^{///} //////////////////////////////		(c.u.)	Ž4
100	Day of Week (MWF):	W		2	W	JE .	<i>M</i>
T.	Test Day:	7	5	12_		~	12
	9	7.0	8.0	45	2.53	7.46	2.49
R					\		
E							
A							
300							
M							
Ŋ							
1							

TEST I.D. CHA

TEST WEEK 3

	Cond. (uS)				emperature (°	C)	· · · · · · · · · · · · · · · · · · ·	
Treatment I.D.	Day 14	Day 14	Day 15	Day 16	Day 17	Day 18	Day 19	Day 20
1	245	90	22	9 9	52	22	93	ig_
2	276	22	22	92	22	32	122	<u>aa</u>
3	280	20	72	99	32	32_	93	99
<u> </u>	1229	93	22_	92	22	22_	92	132
<u> </u>	286	33	22	22	22	22	22	12
	286	22	22	23	22	22	22	22
	297	22	22	133	22	<u> </u>	22	92
<u> </u>	1 285	99	22	199	22	30	1 22	122
Replicate # Measured:	a"	3	i	8	10	4	4	
Date:		8115/02	8/16/07	81,2,07	8/18/07	8/19/07	812407	8121147
Initials:		60	PB	he	CS	CS	UP	63

		Dis	ss. Oxygen (m	g/i)		pH (\$.U.)	
	Day of Week (MWF):	لنا	£	m	لها	F	M
	Teet Day:	14	16	19	14	16	19
1	1	36.1	5,9	5.3	8.39	8.29	8.12
R	<u> </u>	4.3	4.0	6.1	2,87	2.95	29/
E	3	4.4	4.0	40	8.15	8.30	2.31
A	4	4.6	6./	4.1	2.89	7.91	2.81
T	5	4.5	6.3	4.5	2.81	7.86	7.90
M	<u> </u>	5.1	5.8	4.8	2.38	2.45	2.63
N	7	4.3	6.2	5,8	8.02	8.27	818
	8	4.2	4.4	6.4	7.71	224	2.68

TEST WEEK 3

1		ų, v	ss. Oxygen (m	9 ()		, ρH (S,U.)	in the second
	pay chareer (maris):	(J	F	m	W	F	m
	Test Day:	14	16	19	17	16	19
T	9	5.6	5.7	6.5	2.75	2.79	7 67
R					\	\	1
A							
1							
M							
N							
							\

TEST LD. CHA

DAILY WATER QUALITY - H. AZTECA 28-D TEST

Coastal Bioanalysts, Inc. Form STF0099B Effective Date 5/15/07

TEST WEEK 4

	200	Cond (&S)		J.		Tempera	Temperature (C)		The state of the s	
Treatment I.D.	Day21	Day 28	Day21	Day22	Day 23	Day 24	Day 25	Day 26	Day 27	Day 28
	304	360	23	2	99	23	محم	4	22	33
2	796	306	22	22	23	૯	4	23	93	66
2	304	3₽3	69	25	22	6	なな	G	4	CC
5	3 0 C	396	76	11	32	4	Q	99	CE	ec.
٧,	263	600	23	22	22	4	u Y	CC	99	99
•	950	78K	99	re	92	с С	ત ત	93	99	er.
<u></u>	335	305	92	93	93	44	6 6	43	23	6
¥	301	254	4	60	CC.	ক ক	d a	4	4	93

9	E019613	3
4	8/afroj	3
ಳು	27.01	(Jrg
	8 120/2001	()
~Q	8125/07	(5)
2	8 (24/167	5
-	10/22/10	9,
7	to/ee/3	8
Replicate # Measured:		The second secon

in wite						, , , , , , , , , , , , , , , , , , ,				
	3	28	7.88	7.57	12.83	3º5 t	7.45	7.38	2.95-	7.57
.u.)	¥	2%	8.03	2.33	2.11		2.87	25.5	5-00	789 2.57
) Hd (Ų	23	S. 36	7.19	8.19	7 63	7.84	2.42	8.44	7 43
	3	2.1	8.21	2,03	8.14	2.17	7.76	845	8.45	7.42
	3	28	ح ف	ورک	h.t	\$ · \$	6.9	\$ 9	6.9	J.
ss. Oxygen (mg/l)	£	2.6	6.3	G . 2)	5.4		,	4.7	5.2	9.0
Diss. Oxy	()	23	5,6	5.6	5.6	5,6	6.3	1.7	25	D S
	3	2,1	5.4	7	5.8	5.4	9	د ک	7.9	S. 9
	Day of Week(MWF):	Test Day:		7	3	3	λ	٠		,
12 12 12 13)	e	m,	€.	H	2	7	page 1

TEST I.D.

TEST WEEK 4

	Cond	l (uS)				Tempera	iture (° C)			
Treatment I.D.	Day21	Day 28	Day21	Day22	Day 23	Day 24	Day 25	Day 26	Day 27	Day 28
9	298	300	22	22	22	23	92	22	22	82
	\		1	1			j		1	1
										1
				l						
Replicate # Measur	ed:		4)		2	2	j	5	1	(a
Date:			8122107	8/3/00	8124167		8/24/07	8127107	8/28/07	6/29/07
Initials:			em	PB	Co	CS	CS	60	Cyn	CB

			Diss. Oxy	gen (mg/l)			pH ((S.U.)	
	Day of Week (MWF):	W	F	m	N	Ι ω	7=	m	4
	Test Day:	2(23_	26	28	21	23	26	28
T	Ŷ	5.7	5.2	5.8	6 1	7.52	2.54	2.97	2.29
R		1	\	1	1		(1	7
E			\						1
A									
1									
M									
N									
T									

TEST I.D. CHA

	; n	Day 0			Day 28	The state of the s	
Treatment Identification	Hardness (mg/l)	Alkalinity (mg/l)	NH3-N (mg/l)	Hardness (mg/l)	Alkalinity (mg/l)	NH3-N (mg/l)	NOTES
	106	168	41.0	94	153	41.0	
2	134	169	41.3	116	124	41.0	
3	124	149	41,0	108	112	حا.o	
4	134	121	41.0	102	142	<u> </u>	
5	116	147	<1,0	92	144	<1.0	
<u></u>	100	149	1.8	84	148	4.0	
1	124	139	<1.0	82	144	4.0	
4	114	153	21,0	92	130	(10	
9	134	146	<1,0	90	129	<u><</u>].0	
							-
	-thomas						
Ropi. # Meas.:	l	[5	5	-	
Date:	-8/	1/07-	•	-81	25/27		
Initials:	1	16B	`	P	0+6B		

Test I.D. ENTA 2701 -CHA	Γest I.D	ENT	A	2701	CHA
--------------------------	----------	-----	---	------	-----

		Check for Interfering Organisms			Pore Water		
Sediment ID	Sediment Appearance and Texture	Sieve Size (μm)	Organism Types Present	pH (S.U.)	NH ₃ -N (mg/l)	Salinity (g/kg)	
	Black, surdy, gravúchunks			10.91	8.4	MA	
2	Olack, sandy sticks			18.0	2.7	<u> </u>	
3	Black, sandy, mid			7.02	1.1		
4	Gray sandy mid			10.78	1.2		
5	any surhand			4.85	2.7		
6	-say mi			6 25	5.6		
	Black of 5 ml , sand /and		Blank of grand	6.86	6.7		
APP 0				10.88	4.4		
9	Black, sig, sand sticks			6.85	4.4		
	3	***					
Age To the second of		₽				9 0	
				Ţ,			
	100						
Initials:							
Date:	`						

Note: See separate work sheets for other sediment parameters (e.g. percent water)

Form STF0021B

Sample ID	Total Wet Wt. (g)	Total Dry WL (g)	Tare Wt (9)	Net Wet Wt (g)	Net Dry Wt (g)	% H ₂ O
1	44.8	28.5	1,3	43.5	27.1	37.5
۵,	58.5	440	1.3	57.2	42.7	25.3
3	53,4	39.2	1.3	52.1	37.9	273
4	575	465	1.3	56.2	45.2	19.6
5	71.4	56.8	1.2	76.2	55.6	20.8
4	368	15.3	1.3	35.5	14.0	2.02
7	43.5	269	1.3	42.2	25.6	39.4
8	42.5	465	1.3	61.2	45,2	26.1
9	66.9	47.3	1.3	65.6	46.0	29.5
	,					
	·					

Tare Wt:	Date: 8/1/17-	Class S Nom. Wt 10.5	Class S Meas, Weight /o.a	Init_G8
Wet Wt:	Date: _ <	Class S Nom. Wt 50.3	Class S Meas. Weight 100	Init PALS
Dry Wt:	Date: XX/10	Class S Nom. Wt 50.3 Class S Nom. Wt 50.0	Class S Meas. Weight	Init

ENTA0701

SEDIMENT CHAIN OF CUSTODY

Questions? Please call us at 804-694-8285

5/15/07

Ship To: Coastal Bioanalysts, Inc. 6400 Enterprise Ct.

Gloucester VA 23061

			,		
PROJECT NAME:	-1- 0	4419	CONTACT NAME: Jeff Stoffer		ļ
Stanley To SAMPLERS:			CONTACT PH#: 847.409 . 7		
R. Regester	- M.Co	~/30~	CONTACT EMAIL: 15 to fferaha	Renta	ct.com
BILL TO: FACT	ACT		- 28 day PO#: AUTHORIZED BY: (PR	INT & SIGN)'
		ve cf s		Regeste	·
West	mont	12 603	559 Phonda	Lares	to
043471 F 97	D. A. T.	TIARE	CASSING A OCATION DESCRIPTION		CONT
SAMPLE ID	DATE	TIME	SAMPLE LOCATION/DESCRIPTION	NO. BTLS	CONT. TYPE
0.12.001	7.24.07	1006	100.02	/	HOPE
JRC-9/1.002	7.24.01	1015	2 SE/RC-9/1	/	HOPE
D. EZ. 003	7.24.07	1052	3 SD EZ	1	HOPE
[RE-3/3.004	7.24.07	1134	4 SE/RE - 3/3	1	HDPE
D.CI.005			5 3D·C1	1	HOPE
D.A1-006	7.24.07	1326	6 SD · Al	1	HOPE
1-007	7/25/07	0940	7	1	HAPÉ
é/nc-13/1-00	, ,	1020	85-007 8 SE/AC-13/1		HOPE
			9		
			10		
Authorization for Container type: 0	payment by	a valid puro	chase order or established account required for density polyethylene O = Other:	r processi	ng of samp
					_
Print and Sign N			1. D +		
			orda Regestr	Date/t	time: <u>7· 2</u>
Rec	eived by:	Coo	ler	Date/	time: <u>7·2</u>
2. Reli	nquished b	y:	Aur Fred 2x	Date/f	time:
				Date/	time: 1/1
					•
3. Reli	nquished t	y:	1	Date/	time:
Rec	eived by:_			Date/	time:
Arrival condition:	: Acceptat	ole LOth	er	 ,,	. <u> </u>
Cooler temperat			°C Delivered by: UPS FedEx/-	land	
Form STF0011E	3			Page	of_
	_			~ 9~	———

SEDIMENT CHAIN OF CUSTODY

Questions? Please call us at 804-694-8285

Ship To: Coastal Bioanalysts, Inc. 6400 Enterprise Ct. Gloucester VA 23061

PROJECT NAME:			CONTACT NAME:			
ENTA O	701				{	
SAMPLERS:			CONTACT PH#: N/A			
ANALYSES		·	CONTACT EMAIL:			
	NIA				}	
BILL TO:			PO #: AUTHORIZED BY: (PRIN	T & SIGN	,	
		MA				
		•				
SAMPLE ID	DATE	TIME	SAMPLE LOCATION/DESCRIPTION	NO.	CONT.	
			1	BTLS	TYPE ²	
AB CONTROL	7/15/27	1530	BEAUCHDAN RETENTION PONDE!	(PP	
			2			
			3			
			4			
		<u></u>	5	<u> </u>		
		<u> </u>	6	-		
			7	 		
			8	<u> </u>		
			9			
	1		10	1		
² Container type:	G = glass Hi	/ a valid pur OPE = high	chase order or established account required for density polyethylene O = Other:	processi	ng of sample	
Print and Sign I		_a			7/25	
1. Re	linquished b	y:		Date/t	7/25 ime:/6	
Re	ceived by:_	SANC	DUE COLD SOMME			
2. Relinquished by:				Date/t	ime:	
Re	ceived by:_			Date/time:		
			:	Date/time		
	•	•				
Arrival condition	n: Acceptat	ole Coth	ner			
Cooler tempera	ature upon a	arrival:				
Form STF0011 5/15/07	1B			Page_	of	

Chebapeake Cultures. Inc.

P.O. SCX 557 HAYES, VA 25072 (\$04) 506-4046 Phone (\$04) 694-4704 Fex Screens Screens Screens

Packing Slip

8/1/2007

5820

Pete DeLisle
Coastal Bioanalysts
6400 Enterprise Ct.
Gloucester, VA 23061

APPENDIX D BENTHIC COMMUNITY STUDY

Red Cedar River, Stanley Tool Works Benthic Macroinvertebrate Community Survey

Prepared By:

Integrated Lakes Management

120 Le Barron St

Waukegan, IL 60085

Prepared For:

Entact

1010 Executive Ct, Suite 280

Westmont, IL 60559

September 4, 2007

On July 24-25, 2007 ILM and Entact personnel collected samples along a designated stretch of the Red Cedar River where the former Stanley Tool Works was located in Fowlerville, Michigan. Eight sites, chosen by others from former sampling activities, were sampled. Six sites were located within the immediate vicinity of the two effluent discharge points from the operation's former productions; and two reference sites were sampled as controls to reference the results of the target sample locations. The reference locations were located far enough up stream as to provide a representation of what the benthic community should be composed of under natural succession of the river in the absence of point source influence such as that introduced by Stanley Tools.

At each of the eight sites sampled, similar substrates were monitored in an attempt to collect comparable data between points. Different riparian conditions lend themselves favorable to different species and organisms; by keeping the sampled substrate consistent at each location we can obtain an accurate representation of the rivers health by the type of organisms that inhabit each test site in comparison to the reference sites.

Sampling began at the site's furthest point down stream and continued up stream as to not disturb the communities inhabiting the remaining sample sites. At each sample site visual data was collected before physical sampling began. The location of runs, riffles, pools, and glides in proximity to the sample locations were documented as well as the presence of any structures that may alter the flow or hydrology of that particular site such as ditches, large rocks, or dead falls. Watershed influences and weather conditions, previous and current, were also collected. Once visual assessment of a sample location was completed, the physical sampling commenced. A transect was identified at a location within close proximity to the chemical sampling location that would allow us to keep sampled substrate consistent throughout the benthic community survey. Three locations were sampled along each transect. A 12" x 12" Surder stream bottom sampler with 500 um meshes was used for the benthic macroinvertebrate collection. All substrate within the sample grid was thoroughly disturbed to ensure all organisms in that location were gathered for identification and numeration. Once collected, each of the three samples within a single transect were rough sorted in the field and compiled to create a composite for that site. A coarse sieve was used to separate the fine particulate organic matter from the coarse particulate organic mater, while a No. 35 500 um U.S.A. standard test sieve was used to separate the fine particulate organic mater from material such as silt and muck. All organism encountered during the rough sort were place in labeled jars filled with desiccating alcohol for preservation. The coarse particulate organic matter was thoroughly sorted through in the field and then discarded; the fine particular organic mater was collected and preserved in separate jars for a more detailed sort in the laboratory. Once physical benthic community sampling was completed at each site; stream width, stream depth at each collection location, as well as the substrate composition was recorded.

Sorting was done at our facility using a magnifying lamp, for each composite sample the entire collection was thoroughly sorted through one spoonful at a time. Since the samples were preserved for one week in desiccating alcohol, by stirring small quantities of the collection in tap water the preserved specimens would float to the top in the sorting pan making sorting and collection easier. All material was extensively sorted through to ensure an accurate community survey. After the fine sort was completed, identification and numeration began. Using a dissecting scope (magnification of 30 X) all organisms were identified by family, and whenever possible genus and species. All associating data gathered was compiled into tables displaying the species abundance and macroinvertebrate biotic index of each of the eight sample sites. The compiled tables were than given to Entact for further analysis by their Risk Assessor, with copies of these tables attached to this report.

All sorting and identification was performed by Christopher J. Ryan (B.S. in Zoology from Southern Illinois University, and seven years experience in the field of water quality monitoring), and George Russell (student at Columbia College of Missouri majoring in pre-Law and a member of the Missouri Stream Team for the past year) working under the direction of Christopher J. Ryan.

If you have any questions regarding this project, please do not hesitate to contact me.

Sincerely,

Christopher J. Ryan

Table 1: Benthic Tissue Sample Composition

Location	Family Name	Common Name	Trophic Status
SD-J2-001	Tubificidae	Tubifex	Collector-Gatherer
	Cambaridae	Freshwater Crawfishes	Predator
	Chironomidae	Non-Biting Midges	Gatherer
	Heptageniidae	Flat-Headed Mayflies	Predator
	Dytiscidae	Water Beetles	Predator
	Ephemerellidae	Spiny Crawler Mayflies	Gatherer
	Baetidae	Small Minnow Mayfly	Collector-Gatherer/ Scraper
	Gyrinidae	Whirligig Beetles	Predator
	Libellulidae	Skimmer Dragonflies	Predator
	Palaemonetes	Freshwater Shrimp	Gatherer
	Psephenidae	Water Pennies	Gatherer
SE/RC-9/1-002	Chironomidae	Non-Biting Midges	Gatherer
	Clam	Clam	Gatherer
	Dytiscidae	Water Beetles	Predator
SD-E2-003	Chironomidae	Non-Biting Midges	Gatherer
	Perlidae	Common Stoneflies	Predator
SE/RE-3-3-004	Chironomidae	Non-Biting Midges	Gatherer
. 1	Clam	Clams	Gatherer
SD-C1-005	Amphipoda	Scuds	Scavenger
	Chironomidae	Non-Biting Midges	Gatherer
	Corixidae	Water Boatmen	Gatherer
	Dytiscidae	Water Beetles	Predator
SD-A1-006	Ceratopogonidae	Biting Midges	Predator
	Chironomidae	Non-Biting Midges	Gatherer
	Corixidae	Water Boatmen	Gatherer
	Elmidae	Riffle Beetles	Gatherer
SD-007	Chironomidae	Non-Biting Midges	Gatherer
	Clam	Clams	Gatherer
	Elmidae	Riffle Beetles	Gatherer
	Heptageniidae	Flat-Headed Mayflies	Predator
	Hydropsychidae	Net-Spinning Caddisflies	Gatherer or Predator
	Leptoceridae	Long-Horned Caddisflies	Gatherer or Predator
SD-008	Chironomidae	Non-Biting Midges	Gatherer
	Culicidae	Mosquitos	Predator
	Dytiscidae	Water Beetles	Predator
	Gyrinidae	Whirligig Beetles	Predator
	Heptageniidae	Flat-Headed Mayflies	Predator
	Leptoceridae	Long-Horned Caddisflies	Gatherer or Predator
	Limnephilidae	Northern Caddisflies	Gatherer or Predator
Between SE/RE-3-3-	Chironomidae	Non-Biting Midges	Gatherer
004 and SD-C1-005	Heptageniidae	Flat-Headed Mayflies	Predator
	Leptoceridae	Long-Horned Caddisflies	Gatherer or Predator
	Limnephilidae	Northern Caddisflies	Gatherer or Predator

						Se	imple Number						
			SD-J2-001	SE/RC-9/1-002	SD-E2-003	SE/RE-3-3-004	SD-C1-005	SD-A1-006	SD-007	SD-008	Between SE/RE-3-3-004 and SD- C1-005		
		Family MBI Tolerance Value ¹	Sample Data										
Macroin	vertebrate Community	r dittily line. Folerance vasue		Sample Pata									
Taxon	Common Name					·		1	+	· · · ·			
Tubificidae	Tubifex	9	5						+	-			
Cambaridae	Freshwater Crawfishes	в	2			1					1		
Ceratopogonidae	Biting Midges	6						2		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Chironomidae	Non-Biting Midges	8	33	42	47	67	37	14	23	34	B .		
Clam	Clams	В		1		1	- 12:	1	3	+	<u> </u>		
Corixidae	Water Boatmen	5				1	10	1	+	1			
Culic dae	Mosquitos	В						<u> </u>	1	1			
Dytiscidae	Water Beetles	5	3	2			1			2	 		
Elmidae	Riffie Beetles	4						14	1	-			
Ephemerellidae	Spiny Crawler Mayflies	1	1	·				1''	+		1		
Baelidae	Small Minnow Myflies	3	1						+				
Gyrinidae	Whirligig Beetles	4	1			-	-			1			
Heptageniidae	Flat-Headed Mayflies	3	3						2	1	11		
Hyalella	Scuds	8		~			1	<u> </u>	 	·			
Hydropsychidae	Net-Spinning Caddisflies	4			1				3				
Leptoceridae	Long-Horned Caddisfiles	4							1	4	1		
Libellulidae	Skimmer Dragonflies	2	1										
Limnephilidae	Northern Caddisflies	3			1					4	3		
Palaemonetes	Freshwater Shrimp	6	1			·····				·	<u> </u>		
Periidae	Common Stoneflies	2			1				-	1			
Psephenidae	Water Pennies	4	4			i		<u> </u>		1			
No. MBt Organisms Coun	ted ^e		55	45	48	68	49	31	33	47	23		
MBI**5	*		6.85	7.87	7.88	8	7.33	5,97	7.09		4.78		
TBIO'S			4.64	7	5	8	6.5	5.75	5.17	5	4.5		
Total Number of Taxa	· · · · · · · · · · · · · · · · · · ·		11	3	12	12	4	4	6	7	4		

Notes:

Value 0.00-3.50 3.51-4.50 4,51-5,50 6,51-6,50 6,51-7,50 7,50-8,50 8,51-10,00 Good Fair Fairly significant organic pollution Fairly Poor Poor Very Poor Significant organic pollution Very significant organic pollution Severe organic pollution

					Sa	ample Numbe	er			
		SD-J2-001	SE/RC-9/1-002	SD-E2-003				SD-007	SD-008	Between SE/RE-3-3-004
										and SD-C1-005
				<u>'</u>		Sample Data				1
Macroinv	ertebrate Community			<u> </u>						
Taxon	Common Name									
Tubificidae	Tubifex	a								
Cambaridae	Freshwater Crawfishes	۰								
Ceratopogonidae	Biting Midges						•			
Chironomidae	Non-Biting Midges	•	6	•	6	•	٠		,	6
Clam	Clams							,		
Corixidae	Water Boatmen					a	0			
Culicidae	Mosquitos								•	
Dytiscidae	Water Beetles	•	0			•			•	
Elmidae	Riffle Beetles						9			
Ephemerellidae	Spiny Crawler Mayflies									
Baetidae	Small Minnow Myflies	Ð								
Gyrinidae	Whirligig Beetles	•								
Heptageniidae	Flat-Headed Mayflies	•						٠	•	0
Hyalella	Scuds					٠				
Hydropsychidae	Net-Spinning Caddisflies									
Leptoceridae	Long-Horned Caddisflies							٠	٠	•
Libellulidae	Skimmer Dragonflies	6							1	
Limnephilidae	Northern Caddisflies								•	•
Palaemonetes	Freshwater Shrimp	0								
Perlidae	Common Stoneflies			•						
Psephenidae	Water Pennies	٠								
Total number of fam	ilies	11	3	2	2	4	4	6	7	4

⁼ family present

APPENDIX E BACKGROUND THRESHOLD VALUES

SUMMARY OF SEDIMENT BACKGROUND DATA JCI - FOWLERVILLE

		Location	SDBGI	SDBG1	SDBG2	SDBG2	SDBG3	SDBG3	SDBG4	SDBG4	SDBG5	SDBG5
			SDBG1012-	SDBG11224-	SDBG21224-	SDBG2012-	SDBG3012-	SDBG31224-	SDBG4012-	SDBG41224-	SDBG5012-	SDBG51224-
		Field ID:	041803-01	041803-01	041803-01	041803-01	042103-01	042103-01	042103-01	042103-01	042103-01	042103-01
	Date	Sampled:	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/21/2003	4/21/2003	4/21/2003	4/21/2003	4/21/2003	4/21/2003
		Depth (ft):	0 - 12	12 - 24	12 - 24	0 - 12	0 - 12	12 - 24	0 - 12	12 - 24	0 - 12	12 - 24
Volatile Organic Compounds				·	A			·		**************************************	······································	
2-Methylnaphthalene	91-57-6	ug/kg	430 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U
Acenaphthene	83-32-9	ug/kg	430 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U
Acenaphthylene	208-96-8	ug/kg	430 U	330 U	330 U	330 Ü	330 U	330 U	330 U	330 U	330 U	330 U
Anthracene	120-12-7	ug/kg	430 Ú	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U
Benz(a)anthracene	56-55-3	ug/kg	38 J	330 U	330 U	301	330 U	330 U	86 J	330 U	120 J	330 U
Benzo(a)pyrene	50-32-8	ug/kg	54 J	330 U	330 U	37 J	330 U	330 U	84 J	330 U	110 J	330 U
Benzo(b)fluoranthene	205-99-2	ug/kg	98 J	330 U	330 U	64 J	330 U	330 U	1101	330 U	1101	330 U
Benzo(g,h,i)perylene	191-24-2	ug/kg	430 U	330 U	330 U	330 Ü	330 U	330 U	35 J	330 U	47 ʃ	330 U
Benzo(k)fluoranthene	207-08-9	ug/kg	430 U	330 U	330 U	330 U	330 U	330 U	69 J	330 U	92 J	330 U
Chrysene	218-01-9	uµ/kg	56 J	330 U	330 U	42 J	330 U	330 U	110 J	330 U	140 J	330 U
Dihenz(a,h)anthracene	53-70-3	ug/kg	430 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U
Fluoranthene	206-44-0	ug/kg	130 J	330 U	330 U	97 J	31 J	330 U	260 J	22 J	300 J	330 U
Fluorene	86-73-7	uw/kg	430 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U	330 U
Indeno(1,2,3-cd)pyrene	193-39-5	ug/kg	430 U	330 U	330 U	330 U	330 U	330 U	32 J	330 U	461	330 U
Naphthalene	91-20-3	ug/kg	430 U	330 U	330 Ú	330 U	330 U	330 U	330 U	330 U	330 U	330 U
Phenanthrene	85-01-8	ug/kg	59 J	330 U	330 U	40 J	330 U	330 U	120 J	330 U	1101	330 U
Рутепе	129-00-0	ug/kg	100 J	330 U	330 U	73 J	27]	330 U	200 J	330 U	240 J	330 U
PNAs, Total	TPNA	ug/kg	535	NA	NA	383	58	NA	110%	22	1315	NA
Polychlorinated Biphenyls (PC	CBs):		J				1		***************************************	········	<u></u>	·
PCB, Total	TPCB	ие/ке	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
Total Metals:			*************************************		<u> </u>			<u></u>			*	
Aluminum, Total	7429-90-5	mg/kg	NA	NA	3710	2400	1830	1340	1780	NA	2970	NA
Arsenic, Total	7440-38-2	mg/kg	27	18	9	3.5	6.1	1.2	2.8	11	9.2	7.7
Barium, Total	7440-39-3	mg/kg	178	53	51	20	24	6.6	15	19	56	18
Cadmium, Total	7440-43-9	mg/kg	1,1	0.4	0.44	0.17	0.25	0.2	0.16	0.26	0.36	0.35
Chromium, Total	7440-47-3	mg/kg	14	6.8	6.2	4.1	4.6	3.6	3.9	5.7	6.4	4.5
Copper, Total	7440-50-8	mg/kg	16	5.2	6.2	2.7	3.9	3.2	4.4	3.8	9,3	5.1
Lead, Total	7439-92-1	mg/kg	17	4.4	14	5	3.2	1.7	3.4	3	10	7.5
Mercury, Total	7439-97-6	mg/kg	0.12	0.082 J	0.058 J	0.047 J	0.016 J	0.015 J	0.03 J	0.054 J	0.055 J	0.037 J
Nickel, Total	7440-02-0	mg/kg	15	7.3	7	5.3	6.9	6.2	4.3	8.3	6.3	6.5
Selenium, Total	7782-49-2	mg/kg	1.1	2,4	1	0.28 U	0.37	0.24 U	0.26 U	0.18 J	0.36	0.23 J
Silver, Total	7440-22-4	mg/kg	0.13 J	0.06 J	0.06 J	0.026 J ·	0.033 J	0.028 J	0.02 1	0.038 J	0.05 J	0.044 J
Zine, Total	7440-66-6	mg/kg	96	30	39	20	18	12	16.	18	34	20
Chromium(VI)	18540-29-9	mg/kg	60 U	45 U	58 U	15 U	11 U	2 U	2 U	18 U	29 U	14 U
Miscellaneous Parameters:						1						
Fractional Organic Curbon	FOC	%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	TOC	%	16	9,2	6.5	3.1	1.7	0.2	0.9	1.5	5	3.2

NOTES:

U = Non-detect, value is reporting limit

J = Estimated value below reporting limit

NA = Parameter not analyzed

B = Blank qualified result
--- = Parameter not analyzed

SUMMARY OF SEDIMENT BACKGROUND DATA JCI - FOWLERVILLE

		Location	SE/RC-11/I	SE/RC-11/2	SE/RC-12/1	SE/RC-12/2	SE/RC-13/1	SE/RC-13/2	SE/RC-13/2	SE/RC-24-1	SE/RC-25-1	SE/RC-100/I	SE/RC-101/1	SE/RC-102/1	SE/RC-103/1	SD-007	SE/RC-13/1-008
		Field ID:	SE/RC-11/1	SE/RC-11/2	SE/RC-12/1	SE/RC-12/2	SE/RC-13/I	SE/RC-13/2	SE/RC-13/2 Dup	SRC- 24/136787	SRC- 25/136787	SE/RC-100/1	SE/RC-101/1	SE/RC-102/1	SE/RC-103/1	7/25/2007	7/25/2007
	Date	e Sampled:	1/1/1994	1/1/1994	1/1/1994	1/1/1994	1/1/1994	1/1/1994	1/1/1994	9/18/2000	9/18/2000	9/1/2000	9/1/2000	9/1/2000	9/1/2000	SD-007	SE/RC-13/1
		Depth (ft):	0 - 3	6-12	0 - 3	6 - 12	0-3	6-12	6-12	0.0	0-0	0 - 3	0 - 3	0-3	0-3	0-12	0-12
Volatile Organic Compounds				<u> </u>			<u></u>				<u></u>		\				
2-Methylmaphthalene	91-57-6	ug/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	420 U	450 U	370 U	NA .	NA	NA
Acenaphthene	83-32-9	ug/kg	NA	NA	ÑA	NA	NA.	NA	NA	54 U	47 U	NA	NA	NA	NA	<1220 Ü	<1220 U
Acenaphthylene	208-96-8	ug/kg	NA	NA	NA	NA	NA	NA	NA	57 U	49 U	NA	NA	NA	NA	<2440 U	<2440 U
Anthracene	120-12-7	ug/kg	67 J	370 U	540 U	440 U	5600 U	6300 U	550 U	83 U	71 U	420 U	450 U	370 U	450 U	<1220 U	<1220 L
Benz(a)anthracene	56-55-3	ug/kg	230 J	370 U	540 U	440 U	5600 U	6300 U	550 U	97 J	57 U	801	450 U	370 U	120 J	<610 U	<610 U
Benzo(a)pyrene	50-32-8	ug/kg	260 J	370 U	220 J	67 J	5600 U	6300 U	550 U	76 J	66 J	65 J	450 U	370 U	130 J	155	<61.0 U
Benzo(h)fluoranthene	205-99-2	ug/kg	260 J	370 U	540 U	87 J	5600 U	6300 L/	550 U	75 J	54 /	66 J	450 U	370 U	170 J	<610 U	<610 U
Benzo(g.h.i)perylene	191-24-2	ug/kg	160.1	370 U	540 U	440 U	5600 U	6300 U	550 U	67 U	58 U	420 U	450 U	370 U	110 J	<1220 U	<1220 U
Benzo(k)fluorunthene	207-08-9	ug/kg	270 J	370 U	540 U	440 U	5600 U	6300 U	550 U	120 U	110 U	420 U	450 U	370 U	450 U	<(220) U	<1220 L
Chrysene	218-01-9	ug/kg	350 J	370 U	540 U	71 <i>I</i>	5600 U	6300 U	550 U	NA	NA NA	85 J	450 U	370 U	1601	<1220 U	<1220 €
Dibenz(a,h)anthracene	53-70-3	ug/kg	NA	NA	NA	NA	NA	NA	NA	81 U	70 U	NA	NA	NA	NA	<61.0 U	<61.0 €
Fluoranthene	206-44-0	ug/kg	560 J	370 U	72 J	160 J	5600 U	6300 U	550 ป	1703	I [0 J	130 J	450 U	370 U	270 J	<1220 U	<1220 L
Fluorene	86-73-7	ug/kg	660 U	370 U	540 U	440 U	5600 U	6300 U	550 U	64 U	55 U	420 U	450 U	370 U	450 U	<1220 U	<1220 L
Indeno(1,2,3-cd)pyrene	193-39-5	ug/kg	160 J	370 U	540 U	440 U	5600 U	6300 U	550 U	83 U	71 U	420 U	450 U	370 U	83 J	<610 U	<610 L
Naphthalene	91-20-3	ug/kg	NA NA	NA	ŇA	NA	NA	NA NA	NA	80 U	68 U	420 U	450 U	370 U	450 U	<1220 U	<1220 U
Phenanthrene	85-01-8	ug/kg	240 J	370 U	540 U	120 J	5600 U	6300 U	550 U	65 U	56 U	420 U	450 U	370 U	130 J	<1220 U	<1220 L
Pyrene	129-00-0	uÆ/k8	430 J	370 U	67 J	120 J	5600 U	6300 U	550 U	150 J	120 J	120 J	450 U	370 U	290 J	<1220 U	<1220 t
PNAs, Total	TPNA	ug/kg	2987	NA NA	359	625	NA NA] NA	NA	568	350	546	NA	NA NA	1463	155	ND
Polychlorinated Biphenyls (PCI												<u> </u>	·	·			
PCB, Total	TPCB	ug/kg	NA NA	NA NA	NA	NA	NA	NA	NA.	NA	NA NA	14 J	97	NA	NA	ND	ND
Total Metals:						·											
Aluminum, Total	7429-90-5	mg/kg	NA	NA NA	NA	NA	NA NA	NA	NA :	NA	NA	NA NA	NA	NA	NA	NA	NA
Arsenie, Total	7440-38-2	mg/kg	13.3	35.8	[3.7	3.7	9.4	12.5	9.9	11.1	4.8	3	10.3	4.4	3.8	<3.42 U	7.11
Barium, Total	7440-39-3	mg/kg	87.2	31.1	50.8	21	643	73.8	53.9	58.7	38.4	20.1	72.9	15.1	32.5	NA Y	NA NA
Cadmium, Total	7440-43-9	mg/kg	2	1.1	0.82 U	0.67 U	0.84 U	0.96 U	0.83 U	0.52 B	0.26 B	0.64 U	0.68 U	0.56 U	0.2 J	<0.683 U	<0.678 L
Chromium, Total	7440-47-3	mg/kg	8.2	8.3	8	5	10.5	12.3	6.5	6.7	5.6	12.5	18	6	6.3	3.27	6.61 9.29
Copper, Total	7440-50-8	mg/kg	15.6	10.4	11.9	6.2 4.4	16.4 9.1	13.9	7.4	NA 8.7	NA NA	NA 3.4	NA 6.2	NA 3.3	NA 10.8	<3.42 U	4.64
Lead, Total	7439-92-1 7439-97-6	mg/kg	0.2 U	0.11 U	10.6 0.16 U	0.13 U	0.17 U	0.19 U	0.17 U	0.038 B	0.032 B	0.011 J	0.0053 J	0.0074 J	0.021 J	NA NA	NA NA
Mercury, Total	7439-97-6	mg/kg	8	7.5	8.2	5.8	9.4	11.6	8	0.038 B NA	0.032 B NA	NA NA	NA	NA	NA	<3.42 U	9.16
Nickel, Total	7782-49-2	mg/kg mg/kg	1 U	1.10	1.3 J	0,43 J	0.84 U	0.96 U	0.36 J	0.92 B	0.6LU	1.7 U	1.8 U	1.5 U	1.8 U	NA NA	NA NA
Selenium, Total Silver, Total	7440-22-4	mg/kg	0.91	1.1 U	0.57]	1.3 U	1 JB	1 JB	1.7 U	0.92 B	0.61 U	NA.	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc, Total	7440-66-6	mg/kg	78.5	16.2	43.3	22.5	55.1 B	59.2 B	33.9	0.72 0 NA	NA	NA NA	NA NA	NA NA	NA NA	10.1	21.7
Chromium(VI)	18540-29-9	mg/kg	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	I NA	NA NA	NA NA	NA NA	NA NA	10.1	411/
Miscellaneous Parameters:	1 10340-29-9	1 mark		1 11/1	14/4		1 34	1	INA .	I IVA	1 190	IVA	MB	1 112	1 100		
Fractional Organic Carbon	FOC	%	NA	NA.	NA	NA	NA	NA	NA	NA	l NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon	TOC	%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Organic Carron	1 100	//	L IVA	1 174	INA.	11/1	1 117	1 177	IAV	I IVA	1 11/2	1 11/1	11/1	1 11/1	11/7	11/1	11/1

NOTES:

U = Non-detect, value is reporting limit

J = Estimated value below reporting limit

NA = Parameter not analyzed

B = Blank qualified result

--- = Parameter not analyzed

Table E-2 Outlier Tests for Selected Variables

No Outlier Test for PCB

User Selected Options

From File WorkSheet.wst

Full Precision

Test for Suspected Outliers with Dixon test 1
Test for Suspected Outliers with Rosner test 1

Dixon's Outlier Test for PNA

Number of data = 13 10% critical value: 0.467 5% critical value: 0.521 1% critical value: 0.615

1. 2,987 is a Potential Outlier (Upper Tail)

Test Statistic: 0.590

For 10% significance level, 2.987 is an outlier. For 5% significance level, 2.987 is an outlier. For 1% significance level, 2.987 is not an outlier.

2. 0.058 is a Potential Outlier (Lower Tail)

Test Statistic: 0.208

For 10% significance level, 0.058 is not an outlier. For 5% significance level, 0.058 is not an outlier. For 1% significance level, 0.058 is not an outlier.

Dixon's Outlier Test for Aluminum

Number of data = 4 10% critical value: 0.679 5% critical value: 0.765 1% critical value: 0.889

1. 2970 is a Potential Outlier (Upper Tail)

Test Statistic: 0.479

For 10% significance level, 2970 is not an outlier. For 5% significance level, 2970 is not an outlier. For 1% significance level, 2970 is not an outlier.

2. 1780 is a Potential Outlier (Lower Tail)

Test Statistic: 0.042

For 10% significance level, 1780 is not an outlier. For 5% significance level, 1780 is not an outlier. For 1% significance level, 1780 is not an outlier.

Dixon's Outlier Test for pna outlier

Number of data = 12 10% critical value: 0.49 5% critical value: 0.546 1% critical value: 0.642

1. 1.463 is a Potential Outlier (Upper Tail)

Test Statistic: 0.273

For 10% significance level, 1.463 is not an outlier. For 5% significance level, 1.463 is not an outlier. For 1% significance level, 1.463 is not an outlier.

2. 0.058 is a Potential Outlier (Lower Tail)

Test Statistic: 0.232

For 10% significance level, 0.058 is not an outlier. For 5% significance level, 0.058 is not an outlier. For 1% significance level, 0.058 is not an outlier.

Dixon's Outlier Test for As outlier

Number of data = 19 10% critical value: 0.412 5% critical value: 0.462 1% critical value: 0.547

1. 27 is a Potential Outlier (Upper Tail)

Test Statistic: 0.571

For 10% significance level, 27 is an outlier. For 5% significance level, 27 is an outlier. For 1% significance level, 27 is an outlier.

2. 1.71 is a Potential Outlier (Lower Tail)

Test Statistic: 0.111

For 10% significance level, 1.71 is not an outlier. For 5% significance level, 1.71 is not an outlier. For 1% significance level, 1.71 is not an outlier.

Outlier Tests for Selected Variables

Dixon's Outlier Test for Arsenic

Number of data = 20 10% critical value: 0.401 5% critical value: 0.45 1% critical value: 0.535

1. 35.8 is a Potential Outlier (Upper Tail)

Test Statistic: 0.674

For 10% significance level, 35.8 is an outlier. For 5% significance level, 35.8 is an outlier. For 1% significance level, 35.8 is an outlier.

2. 1.71 is a Potential Outlier (Lower Tail)

Test Statistic: 0.108

For 10% significance level, 1.71 is not an outlier. For 5% significance level, 1.71 is not an outlier. For 1% significance level, 1.71 is not an outlier.

Dixon's Outlier Test for Barium

Number of data = 18 10% critical value: 0.424 5% critical value: 0.475 1% critical value: 0.561

1. 178 is a Potential Outlier (Upper Tail)

Test Statistic: 0.659

For 10% significance level, 178 is an outlier. For 5% significance level, 178 is an outlier. For 1% significance level, 178 is an outlier.

2. 15 is a Potential Outlier (Lower Tail)

Test Statistic: 0.085

For 10% significance level, 15 is not an outlier. For 5% significance level, 15 is not an outlier. For 1% significance level, 15 is not an outlier.

Dixon's Outlier Test for Ba outlier

Number of data = 17 10% critical value: 0.438 5% critical value: 0.49 1% critical value: 0.577

1. 87.2 is a Potential Outlier (Upper Tail)

Test Statistic: 0.213

For 10% significance level, 87.2 is not an outlier. For 5% significance level, 87.2 is not an outlier. For 1% significance level, 87.2 is not an outlier.

2. 15 is a Potential Outlier (Lower Tail)

Test Statistic: 0.086

For 10% significance level, 15 is not an outlier. For 5% significance level, 15 is not an outlier. For 1% significance level, 15 is not an outlier.

Dixon's Outlier Test for Cd outlier

Number of data = 19 10% critical value: 0.412 5% critical value: 0.462 1% critical value: 0.547

1. 1.1 is a Potential Outlier (Upper Tail)

Test Statistic: 0.644

For 10% significance level, 1.1 is an outlier. For 5% significance level, 1.1 is an outlier. For 1% significance level, 1.1 is an outlier.

2. 0.16 is a Potential Outlier (Lower Tail)

Test Statistic: 0.111

For 10% significance level, 0.16 is not an outlier. For 5% significance level, 0.16 is not an outlier. For 1% significance level, 0.16 is not an outlier.

Outlier Tests for Selected Variables

Dixon's Outlier Test for Cadmium

Number of data = 20 10% critical value: 0.401 5% critical value: 0.45 1% critical value: 0.535

1. 2 is a Potential Outlier (Upper Tail)

Test Statistic: 0.500

For 10% significance level, 2 is an outlier. For 5% significance level, 2 is an outlier. For 1% significance level, 2 is not an outlier.

2. 0.16 is a Potential Outlier (Lower Tail)

Test Statistic: 0.043

For 10% significance level, 0.16 is not an outlier. For 5% significance level, 0.16 is not an outlier. For 1% significance level, 0.16 is not an outlier.

Dixon's Outlier Test for Copper

Number of data = 14 10% critical value: 0.492 5% critical value: 0.546 1% critical value: 0.641

1. 21.7 is a Potential Outlier (Upper Tail)

Test Statistic: 0.320

For 10% significance level, 21.7 is not an outlier. For 5% significance level, 21.7 is not an outlier. For 1% significance level, 21.7 is not an outlier.

2. 1.71 is a Potential Outlier (Lower Tail)

Test Statistic: 0.153

For 10% significance level, 1.71 is not an outlier. For 5% significance level, 1.71 is not an outlier. For 1% significance level, 1.71 is not an outlier.

Dixon's Outlier Test for Cr outlier

Number of data = 19 10% critical value: 0.412 5% critical value: 0.462 1% critical value: 0.547

1. 14 is a Potential Outlier (Upper Tail)

Test Statistic: 0.172

For 10% significance level, 14 is not an outlier. For 5% significance level, 14 is not an outlier. For 1% significance level, 14 is not an outlier.

2. 3.27 is a Potential Outlier (Lower Tail)

Test Statistic: 0.092

For 10% significance level, 3.27 is not an outlier. For 5% significance level, 3.27 is not an outlier. For 1% significance level, 3.27 is not an outlier.

Dixon's Outlier Test for Ni outlier

Number of data = 13 10% critical value: 0.467 5% critical value: 0.521 1% critical value: 0.615

1. 11.6 is a Potential Outlier (Upper Tail)

Test Statistic: 0.334

For 10% significance level, 11.6 is not an outlier. For 5% significance level, 11.6 is not an outlier. For 1% significance level, 11.6 is not an outlier.

2. 1.71 is a Potential Outlier (Lower Tail)

Test Statistic: 0.467

For 10% significance level, 1.71 is not an outlier. For 5% significance level, 1.71 is not an outlier. For 1% significance level, 1.71 is not an outlier.

Outlier Tests for Selected Variables

Dixon's Outlier Test for Chromium

Number of data = 20 10% critical value: 0.401 5% critical value: 0.45 1% critical value: 0.535

1. 18 is a Potential Outlier (Upper Tail)

Test Statistic: 0.396

For 10% significance level, 18 is not an outlier. For 5% significance level, 18 is not an outlier. For 1% significance level, 18 is not an outlier.

2. 3.27 is a Potential Outlier (Lower Tail)

Test Statistic: 0.090

For 10% significance level, 3.27 is not an outlier. For 5% significance level, 3.27 is not an outlier. For 1% significance level, 3.27 is not an outlier.

Dixon's Outlier Test for Nickel

Number of data = 14 10% critical value: 0.492 5% critical value: 0.546 1% critical value: 0.641

1. 15 is a Potential Outlier (Upper Tail)

Test Statistic: 0.577

For 10% significance level, 15 is an outlier. For 5% significance level, 15 is an outlier. For 1% significance level, 15 is not an outlier.

2. 1.71 is a Potential Outlier (Lower Tail)

Test Statistic: 0.467

For 10% significance level, 1.71 is not an outlier. For 5% significance level, 1.71 is not an outlier. For 1% significance level, 1.71 is not an outlier.

Dixon's Outlier Test for Lead

Number of data = 20 10% critical value: 0.401 5% critical value: 0.45 1% critical value: 0.535

1. 17 is a Potential Outlier (Upper Tail)

Test Statistic: 0.435

For 10% significance level, 17 is an outlier. For 5% significance level, 17 is not an outlier. For 1% significance level, 17 is not an outlier.

2. 1.71 is a Potential Outlier (Lower Tail)

Test Statistic: 0.160

For 10% significance level, 1.71 is not an outlier. For 5% significance level, 1.71 is not an outlier. For 1% significance level, 1.71 is not an outlier.

Dixon's Outlier Test for Mercury

Number of data = 18 10% critical value: 0.424 5% critical value: 0.475 1% critical value: 0.561

1. 0.12 is a Potential Outlier (Upper Tail)

Test Statistic: 0.229

For 10% significance level, 0.12 is not an outlier. For 5% significance level, 0.12 is not an outlier. For 1% significance level, 0.12 is not an outlier.

2. 0.0053 is a Potential Outlier (Lower Tail)

Test Statistic: 0.064

For 10% significance level, 0.0053 is not an outlier. For 5% significance level, 0.0053 is not an outlier. For 1% significance level, 0.0053 is not an outlier.

Outlier Tests for Selected Variables

Dixon's Outlier Test for Selenium

Number of data = 18 10% critical value: 0.424 5% critical value: 0.475 1% critical value: 0.561

1. 1.3 is a Potential Outlier (Upper Tail)

Test Statistic: 0.382

For 10% significance level, 1.3 is not an outlier. For 5% significance level, 1.3 is not an outlier. For 1% significance level, 1.3 is not an outlier.

2. 0.13 is a Potential Outlier (Lower Tail)

Test Statistic: 0.222

For 10% significance level, 0.13 is not an outlier. For 5% significance level, 0.13 is not an outlier. For 1% significance level, 0.13 is not an outlier.

Dixon's Outlier Test for Zinc

Number of data = 14 10% critical value: 0.492 5% critical value: 0.546 1% critical value: 0.641

1. 96 is a Potential Outlier (Upper Tail)

Test Statistic: 0.461

For 10% significance level, 96 is not an outlier. For 5% significance level, 96 is not an outlier. For 1% significance level, 96 is not an outlier.

2. 10.1 is a Potential Outlier (Lower Tail)

Test Statistic: 0.124

For 10% significance level, 10.1 is not an outlier. For 5% significance level, 10.1 is not an outlier. For 1% significance level, 10.1 is not an outlier.

Dixon's Outlier Test for Silver

Number of data = 14 10% critical value: 0.492 5% critical value: 0.546 1% critical value: 0.641

1. 1 is a Potential Outlier (Upper Tail)

Test Statistic: 0.103

For 10% significance level, 1 is not an outlier. For 5% significance level, 1 is not an outlier. For 1% significance level, 1 is not an outlier.

2. 0.02 is a Potential Outlier (Lower Tail)

Test Statistic: 0.015

For 10% significance level, 0.02 is not an outlier. For 5% significance level, 0.02 is not an outlier. For 1% significance level, 0.02 is not an outlier.

General Background Statistics for Full Data Sets

User Selected Options

K-S Test Statistic

	53ct octobed Options				
	From File	WorkSheet_a.wst			
	Full Precision	OFF		,	
	Confidence Coefficient	95%		e e	
	Coverage	90%			
	Different or Future K Values	1			
	Number of Bootstrap Operations	2000			
	pna outlier				
٠	General Statistics				
	Total Number of Samples		12	Number of Unique Samples	12
	Raw Statistics			Log-Transformed Statistics	
	Minimum		0.058	Minimum	-2.847
	Maximum		1.463	Maximum	0.38
	Second Largest		1.315	Second Largest	0.274
	First Quartile			First Quartile	-1.043
	Median			Median	-0.615
	Third Quartile			Third Quartile	-0.0419
	Mean			Mean	-0.771
	SD		0.445		0.907
	Coefficient of Variation		0.715		
	Skewness		0.878		
	Background Statistics				
	Normal Distribution Test			Lognormal Distribution Test	
	Shapiro Wilk Test Statistic			Shapiro Wilk Test Statistic	0.913
	Shapiro Wilk Critical Value		0.859	Shapiro Wilk Critical Value	0.859
	Data appear Normal at 5% Significa	nce Level		Data appear Lognormal at 5% Significance Level	
	Assuming Normal Distribution			Assuming Lognormal Distribution	
	95% UTL with 90% Coverage			95% UTL with 90% Coverage	3.429
	95% UPL (t)			95% UPL (t)	2.518
	90% Percentile (z)			90% Percentile (z)	1.478
	95% Percentile (z)			95% Percentile (z)	2.054
	99% Percentile (z)		1.656	99% Percentile (z)	3.811
	Gamma Distribution Test			Data Distribution Test	
	k star			Data appear Normal at 5% Significance Level	
	Theta Star		0.434		
	nu star		34.38		
	A-D Test Statistic			Nonparametric Statistics	
	5% A-D Critical Value			90% Percentile	1.419

0.159 95% Percentile

1.463

General Background Statistics										
5% K-S Critical Value	0.249	99% Percentile	1.463							
Data appear Gamma Distributed at 5% Significance Level										
Assuming Gamma Distribution		95% UTL with 90% Coverage	1.463							
90% Percentile	1.311	95% Percentile Bootstrap UTL with 90% Coverage	1.463							
95% Percentile	1.645	95% BCA Bootstrap UTL with 90% Coverage	1.433							
99% Percentile	2.403	95% UPL	1.463							
		95% Chebyshev UPL	2.639							
		Upper Threshold Limit Based upon IQR	1.936							

Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV

As outlier

Total Number of Samples	General Statistics			
Maximum	Total Number of Samples	18	Number of Unique Samples	18
Maximum	Raw Statistics		Log-Transformed Statistics	
Second Largest 13.3 Second Largest 2.588 First Quartille 3.65 First Quartille 1.294 Median 6.605 Median 1.865 Third Quartile 10.5 Third Quartile 2.351 Mean 7.24 Mean 1.311 SD 3.97 SD 0.628 Coefficient of Variation 0.548 Skewness 0.266 Background Statistics	Minimum	1.71	Minimum	0.536
First Quartile	Maximum	13.7	Maximum	2.617
Median 1.885 Third Quartile 10.5 Third Quartile 2.551 Mean 1.881 Mean 7.24 Mean 1.811 SD 3.97 SD 0.628 Coefficient of Variation 0.548 Coefficient of Variation 0.931 Coefficient of Variat	Second Largest	13.3	Second Largest	2.588
Third Quartile	First Quartile	3.65	First Quartile	1.294
Mean	Median	6.605	Median	1.885
SD	Third Quartile	10.5	Third Quartile	2.351
Coefficient of Variation Coefficient Coefficien	Mean	7.24	Mean	1.811
Background Statistics Lognormal Distribution Test Lognormal Distribution Logno	SD	3.97	SD	0.628
Background Statistics	Coefficient of Variation	0.548		
Normal Distribution Test Lognormal Distribution Test Shapiro Wilk Test Statistic 0.917 Shapiro Wilk Critical Value 0.897 Shapiro Wilk Critical Value 0.898 Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Data appear Lognormal Distribution Shapiro Wilk Critical Value Data Distribution Data Distribution Shapiro Wilk Critical Value Data Distribution Data Data Data Data Data Data Data Da	Skewness	0.266	i	
Normal Distribution Test Lognormal Distribution Test Shapiro Wilk Test Statistic 0.917 Shapiro Wilk Critical Value 0.897 Shapiro Wilk Critical Value 0.897 Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Data appear Lognormal Distribution Shapiro Wilk Critical Value Data appear Lognormal Distribution Shapiro Wilk Critical Value Data appear Lognormal Distribution Shapiro Wilk Plant Shapiro Wilk Critical Value Data Distribution Shapiro Wilk Plant Shapiro Wilk Plan	Background Statistics			
Shapiro Wilk Critical Value	· ·		Lognormal Distribution Test	
Data appear Normal at 5% Significance Level Data appear Lognormal at 5% Significance Level	Shapiro Wilk Test Statistic	0.917	Shapiro Wilk Test Statistic	0.931
Assuming Normal Distribution Assuming Lognormal Distribution 95% UTL with 90% Coverage 15.08 95% UTL with 90% Coverage 21.12 95% UPL (t) 14.34 95% UPL (t) 18.79 90% Percentile (z) 12.33 90% Percentile (z) 13.77 95% Percentile (z) 17.18 99% Percentile (z) 16.48 99% Percentile (z) 26.35	Shapiro Wilk Critical Value	0.897	Shapiro Wilk Critical Value	0.897
95% UTL with 90% Coverage 15.08 95% UTL with 90% Coverage 21.12 95% UPL (t) 14.34 95% UPL (t) 18.79 90% Percentile (z) 12.33 90% Percentile (z) 13.68 95% Percentile (z) 13.77 95% Percentile (z) 17.18 99% Percentile (z) 16.48 99% Percentile (z) 26.35 Gamma Distribution Test Data Distribution Test 2.643 Data appear Normal at 5% Significance Level Theta Star 2.739 Data appear Normal at 5% Significance Level 1.74 95.15 A-D Test Statistic 0.511 Nonparametric Statistics 5% A-D Critical Value 0.745 90% Percentile 13.34 K-S Test Statistic 0.179 95% Percentile 13.7 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 Data appear Gamma Distributed at 5% Significance Level 13.2 95% UTL with 90% Coverage 13.7 90% Percentile 13.2 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 21.35 95% UPL 95% Chebyshev UPL	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
95% UTL with 90% Coverage 15.08 95% UTL with 90% Coverage 21.12 95% UPL (t) 14.34 95% UPL (t) 18.79 90% Percentile (z) 13.37 95% Percentile (z) 13.68 95% Percentile (z) 15.08 95% Percentile (z) 13.68 95% Percentile (z) 15.08 95% Percentile (z) 17.18 99% Percentile (z) 16.48 99% Percentile (z) 26.35 Gamma Distribution Test Data Distribution Test 26.35 K star 2.643 Data appear Normal at 5% Significance Level A-D Test Statistic 0.511 Nonparametric Statistics 5% A-D Critical Value 0.745 90% Percentile 13.34 K-S Test Statistic 0.179 95% Percentile 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 Data appear Gamma Distributed at 5% Significance Level 13.7 95% Percentile Bootstrap UTL with 90% Coverage 13.7 90% Percentile 13.21 95% UPL 95% UPL 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 9	Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UPL (t) 14.34 95% UPL (t) 18.79 90% Percentile (z) 12.33 90% Percentile (z) 13.68 95% Percentile (z) 13.77 95% Percentile (z) 17.18 99% Percentile (z) 16.48 99% Percentile (z) 26.35 Gamma Distribution Test Data Distribution Test Level k star 2.643 Data appear Normal at 5% Significance Level Theta Star 2.739 Data appear Normal at 5% Significance Level A-D Test Statistic 0.511 Nonparametric Statistics 5% A-D Critical Value 0.745 90% Percentile 13.34 K-S Test Statistic 0.179 95% Percentile 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 Data appear Gamma Distributed at 5% Significance Level 13.7 95% Percentile 13.7 Assuming Gamma Distribution 95% UTL with 90% Coverage 13.7 95% Percentile 13.7 95% BCA Bootstrap UTL with 90% Coverage 13.7 95% Percentile 21.35 95% UPL 13.7 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR	95% UTL with 90% Coverage	15.08	95% UTL with 90% Coverage	21.12
95% Percentile (z) 13.77 95% Percentile (z) 17.18 99% Percentile (z) 16.48 99% Percentile (z) 26.35 Gamma Distribution Test Data Distribution Test Star 2.643 Data appear Normal at 5% Significance Level 2.739 95.15 A-D Test Statistic 95% A-D Critical Value 0.745 90% Percentile 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 0.205 99% Percentile 3.21 95% Percentile 3.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 3.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 3.37 95% Chebyshev UPL 95% Chebyshev UPL 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	95% UPL (t)			18.79
99% Percentile (z) 16.48 99% Percentile (z) 26.35 Gamma Distribution Test Data Distribution Test k star 2.643 Data appear Normal at 5% Significance Level Theta Star 2.739 nu star 95.15 A-D Test Statistic O.511 Nonparametric Statistics 5% A-D Critical Value 0.745 90% Percentile 0.179 95% Percentile 13.7 95% Percentile 13.7 95% Percentile 13.7 95% Percentile 13.7 95% Percentile 95% UTL with 90% Coverage 13.7 95% Percentile 95% UTL with 90% Coverage 13.7 95% Percentile 13.7 95% BCA Bootstrap UTL with 90% Coverage 13.7 95% Percentile 13.7 95% Chebyshev UPL 13.7 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	90% Percentile (z)	12.33	90% Percentile (z)	13.68
Gamma Distribution Test Data Distribution Test k star 2.643 Data appear Normal at 5% Significance Level Theta Star 2.739 nu star 95.15 A-D Test Statistic 0.511 Nonparametric Statistics 5% A-D Critical Value 0.745 90% Percentile K-S Test Statistic 0.179 95% Percentile 5% K-S Critical Value 0.205 99% Percentile Data appear Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% UTL with 90% Coverage 95% Percentile 13.7 90% Percentile 13.7 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	95% Percentile (z)	13.77	95% Percentile (z)	17.18
k star 2.643 Data appear Normal at 5% Significance Level Theta Star nu star 2.739 95.15 A-D Test Statistic 0.511 Nonparametric Statistics 5% A-D Critical Value 0.745 90% Percentile K-S Test Statistic 0.179 95% Percentile 5% K-S Critical Value 0.205 99% Percentile Data appear Gamma Distributed at 5% Significance Level Assuming Gamma Distribution 95% UTL with 90% Coverage 95% Percentile 13.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 15.77 95% UPL 13.7 99% Percentile 21.35 95% UPL 13.7 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	99% Percentile (z)	16.48	99% Percentile (z)	26.35
Theta Star 95.15	Gamma Distribution Test		Data Distribution Test	
A-D Test Statistic A-D Test Statistic 5% A-D Critical Value 6.745 90% Percentile 7.745 90% Percentile 7.745 90% Percentile 7.745 95% Percentile 7.75% K-S Critical Value 7.75% Percentile 7.75% Percentile 7.75% Percentile 7.75% Percentile Bootstrap UTL with 90% Coverage 7.75% Percentile 7.75% BCA Bootstrap UTL with 90% Coverage 7.75% Chebyshev UPL k star	2.643	Data appear Normal at 5% Significance Level		
A-D Test Statistic 5% A-D Critical Value 6.745 90% Percentile 7.745 90% Percentile 7.745 90% Percentile 7.745 90% Percentile 7.75% K-S Test Statistic 7.75% K-S Critical Value 7.75% Percentile 7.75% Percentile 7.75% Percentile 7.75% Percentile 7.75% Percentile Bootstrap UTL with 90% Coverage 7.75% Percentile 7.75% Percentile 7.75% BCA Bootstrap UTL with 90% Coverage 7.75% BCA Bootstrap UTL with 90% Coverage 7.75% Chebyshev UPL	Theta Star	2.739		
5% A-D Critical Value 0.745 90% Percentile 13.34 K-S Test Statistic 0.179 95% Percentile 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 Data appear Gamma Distributed at 5% Significance Level 13.7 Assuming Gamma Distribution 95% UTL with 90% Coverage 13.7 90% Percentile 13.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 13.7 95% UPL 95% UPL 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	nu star	95.15		
K-S Test Statistic 0.179 95% Percentile 13.7 5% K-S Critical Value 0.205 99% Percentile 13.7 Data appear Gamma Distributed at 5% Significance Level 15.77 Assuming Gamma Distribution 95% UTL with 90% Coverage 13.7 90% Percentile 13.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 95% UPL 15.77 95% UPL 15.77 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	A-D Test Statistic	0.511	Nonparametric Statistics	
5% K-S Critical Value 0.205 99% Percentile 13.7 Data appear Gamma Distributed at 5% Significance Level 95% UTL with 90% Coverage 13.7 90% Percentile 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% UPL 13.7 95% Percentile 21.35 95% UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	5% A-D Critical Value	0.745	90% Percentile	13.34
Data appear Gamma Distributed at 5% Significance Level 95% UTL with 90% Coverage 13.7 Assuming Gamma Distribution 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% UPL 13.7 95% Chebyshev UPL 25.02 25.02 Upper Threshold Limit Based upon IQR 20.78	K-S Test Statistic	0.179	95% Percentile	13.7
Assuming Gamma Distribution 95% UTL with 90% Coverage 13.7 90% Percentile 13.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% UPL 90% Coverage 13.7 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	5% K-S Critical Value	0.205	99% Percentile	13.7
90% Percentile 13.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% UPL 95% Chebyshev UPL 25.02 25.02 Upper Threshold Limit Based upon IQR 20.78	Data appear Gamma Distributed at 5% Significance Level			
90% Percentile 13.21 95% Percentile Bootstrap UTL with 90% Coverage 13.7 95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% UPL 95% Chebyshev UPL 25.02 25.02 Upper Threshold Limit Based upon IQR 20.78	Assuming Gamma Distribution		95% UTL with 90% Coverage	13.7
95% Percentile 15.77 95% BCA Bootstrap UTL with 90% Coverage 13.7 99% Percentile 21.35 95% UPL 95% Chebyshev UPL 25.02 25.02 Upper Threshold Limit Based upon IQR 20.78	v	13.21	5	13.7
99% Percentile 21.35 95% UPL 13.7 95% Chebyshev UPL 25.02 Upper Threshold Limit Based upon IQR 20.78	95% Percentile	15.77	•	13.7
Upper Threshold Limit Based upon IQR 20.78	99% Percentile			13.7
Upper Threshold Limit Based upon IQR 20.78			95% Chebyshev UPL	25.02
Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV			•	
	Note: UPL (or upper percentile for gamma distributed data) rep	resents a	preferred estimate of BTV	

Ba outlier

	Da Callier			
	General Statistics			
	Total Number of Samples	17	Number of Unique Samples	17
	Raw Statistics		Log-Transformed Statistics	
	Minimum	15	Minimum	2.708
	Maximum	87.2	Maximum	4.468
	Second Largest	73.8	Second Largest	4.301
	First Quartile	20.55	First Quartile	3.023
	Median	38.4	Median	3.648
	Third Quartile	61.5	Third Quartile	4.118
	Mean	43.22	Mean	3.614
•	SD	23.15	SD	0.588
	Coefficient of Variation	0.536		
	Skewness	0.375		
	Background Statistics			
	Normal Distribution Test		Lognormal Distribution Test	
	Shapiro Wilk Test Statistic	0.922	Shapiro Wilk Test Statistic	0.924
	Shapiro Wilk Critical Value	0.892	Shapiro Wilk Critical Value	0.892
	Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
	Assuming Normal Distribution		Assuming Lognormal Distribution	
	95% UTL with 90% Coverage	89.58	95% UTL with 90% Coverage	120.4
	95% UPL (t)	84.82	95% UPL (t)	106.7
	90% Percentile (z)	72.9	90% Percentile (z)	78.86
	95% Percentile (z)	81.31	95% Percentile (z)	97.64
	99% Percentile (z)	97.09	99% Percentile (z)	145.7
	Gamma Distribution Test		Data Distribution Test	
	k star		Data appear Normal at 5% Significance Level	
	Theta Star	15.02		
	nu star	97.81		
	A-D Test Statistic	0.491	Nonparametric Statistics	
	5% A-D Critical Value	0.744	90% Percentile	76.48
	K-S Test Statistic	0.157	95% Percentile	87.2
	5% K-S Critical Value	0.21	99% Percentile	87.2
	Data appear Gamma Distributed at 5% Significance Level			
	Assuming Gamma Distribution		95% UTL with 90% Coverage	87.2
	90% Percentile	77.39	95% Percentile Bootstrap UTL with 90% Coverage	87.2
	95% Percentile	91.81		87.2
	99% Percentile		95% UPL	87.2
		,	95% Chebyshev UPL	147.1
			Upper Threshold Limit Based upon IQR	122.9

Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV

Cd outlier

General Statistics			
Total Number of Samples	17	Number of Unique Samples	17
Raw Statistics		Log-Transformed Statistics	
Minimum	0.16	Minimum	-1.833
Maximum	0.52	Maximum	-0.654
Second Largest	0.48	Second Largest	-0.734
First Quartile	0.255	First Quartile	-1.367
Median	0.339	Median	-1.082
Third Quartile	0.413	Third Quartile	-0.886
Mean	0.329	Mean	-1.161
SD	0.102	SD	0.34
Coefficient of Variation	0.31		
Skewness	0.0141		
Background Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Test Statistic	0.94
Shapiro Wilk Critical Value	0.892	Shapiro Wilk Critical Value	0.892
Data appear Normai at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	0.534	95% UTL with 90% Coverage	0.618
95% UPL (t)	0.513	95% UPL (t)	0.576
90% Percentile (z)	0.46	90% Percentile (z)	0.484
95% Percentile (z)	0.497	95% Percentile (z)	0.548
99% Percentile (z)	0.567	99% Percentile (z)	0.69
Gamma Distribution Test		Data Distribution Test	
k star		Data appear Normal at 5% Significance Level	
Theta Star	0.0396		
nu star	282.5		
A-D Test Statistic		Nonparametric Statistics	
5% A-D Critical Value		90% Percentile	0.488
K-S Test Statistic		95% Percentile	0.52
5% K-S Critical Value	0.209	99% Percentile	0.52
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution		95% UTL with 90% Coverage	0.52
90% Percentile		95% Percentile Bootstrap UTL with 90% Coverage	0.52
95% Percentile		95% BCA Bootstrap UTL with 90% Coverage	0.52
99% Percentile	0.652	95% UPL	0.52
		95% Chebyshev UPL	0.787
		Upper Threshold Limit Based upon IQR	0.649
Note: UPL (or upper percentile for gamma distributed data) rep	oresents a	preferred estimate of BTV	

Cr outlier

General Statistics Total Number of Samples	10 Nor	mber of Unique Samples	19
Total Number of Samples	19 1441	mber of onique samples	19
Raw Statistics	Log	g-Transformed Statistics	
Minimum	3.27 Min	imum	1.185
Maximum	14 Max	ximum	2.639
Second Largest	12.5 Sec	cond Largest	2.526
First Quartile	5 Firs	st Quartile	1.609
Median	6.5 Me	dian	1.872
Third Quartile	8.3 Thi	ird Quartile	2.116
Mean	7.304 Me	an	1.91
SD	3.055 SD)	0.405
Coefficient of Variation	0.418		
Skewness	0.915		
Background Statistics	•	and the state of t	
Normal Distribution Test		gnormal Distribution Test	
Shapiro Wilk Test Statistic		apiro Wilk Test Statistic	0.969
Shapiro Wilk Critical Value		apiro Wilk Critical Value	0.901
Data appear Normal at 5% Significance Level	Dat	ta appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Ass	suming Lognormal Distribution	
95% UTL with 90% Coverage		5% UTL with 90% Coverage	14.86
95% UPL (t)	12.74 9	5% UPL (t)	13.87
90% Percentile (z)		% Percentile (z)	11.34
95% Percentile (z)	12.33 959	% Percentile (z)	13.14
99% Percentile (z)	14.41 999	% Percentile (z)	17.31
Gamma Distribution Test	Dat	ta Distribution Test	
k star		ta appear Normal at 5% Significance Level	
Theta Star	1.317	ta appear normal at 5 % Significance Lever	
nu star	210.7		
ru siai	210.7		
A-D Test Statistic	0.366 Nor	nparametric Statistics	
5% A-D Critical Value	0.742 909	% Percentile	12.5
K-S Test Statistic	0.166 959	% Percentile	14
5% K-S Critical Value	0.199 999	% Percentile	14
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution	Q.	5% UTL with 90% Coverage	14
90% Percentile		5% Percentile Bootstrap UTL with 90% Coverage	14
95% Percentile		5% BCA Bootstrap UTL with 90% Coverage	14
99% Percentile	16.37 9		14
		5% Chebyshev UPL	20.97
		per Threshold Limit Based upon IQR	13.25
Note: UPL (or upper percentile for gamma distributed data) re	presents a prefe	erred estimate of BTV	

Ni outlier

Canada Statistica			
General Statistics Total Number of Samples	13 Number of I	Unique Samples	12
Total Number of Samples	13 Nulliber of	orinque dampies	12
Raw Statistics	Log-Transfo	ormed Statistics	
Minimum	1.71 Minimum		0.536
Maximum	11.6 Maximum		2.451
Second Largest	9.4 Second Lar	gest	2.241
First Quartile	5.55 First Quartil	-	1.713
Median	7.5 Median		2.015
Third Quartile	8.68 Third Quarti	le	2,159
Mean	7.09 Mean		1.875
SD	2.505 SD		0.48
Coefficient of Variation	0.353		
Skewness	-0.438		
Background Statistics			
Normal Distribution Test	•	Distribution Test	
Shapiro Wilk Test Statistic	0.979 Shapiro Wil		0.827
Shapiro Wilk Critical Value	0.866 Shapiro Wil		0.866
Data appear Normal at 5% Significance Level	Data not Lo	gnormal at 5% Significance Level	
Assuming Normal Distribution	Assumine L	.ognormal Distribution	
95% UTL with 90% Coverage	•	with 90% Coverage	18.34
95% UPL (t)	11.72 95% UPL	5	15.84
90% Percentile (z)	10.3 90% Perce	**	12.06
95% Percentile (z)	11.21 95% Perce	` ,	14.36
99% Percentile (z)	12.92 99% Perce	ntile (z)	19.91
· ,		•	
Gamma Distribution Test	Data Distrib	ution Test	
k star	4.781 Data appea	r Normal at 5% Significance Level	
Theta Star	1.483		
nu star	124.3		
A-D Test Statistic	0.529 Nonparame	tric Statistics	
5% A-D Critical Value	0.735 90% Percei		10.72
K-S Test Statistic	0.147 95% Perce		11.6
5% K-S Critical Value	0.237 99% Perce		11.6
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution	95% UTL	with 90% Coverage	11.6
90% Percentile		entile Bootstrap UTL with 90% Coverage	11.6
95% Percentile	13.13 95% BCA	Bootstrap UTL with 90% Coverage	10,94
99% Percentile	16.71 95% UPL	•	11.6
	95% Chel	byshev UPL	18.42
	Upper Thre	shold Limit Based upon IQR	13.38

Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV

General Background Statistics

Al			
General Statistics			
Total Number of Samples	4	Number of Unique Samples	4
Raw Statistics		Log-Transformed Statistics	
Minimum	1780	Minimum	7.484
Maximum	2970	Maximum	7.996
Second Largest	2400	Second Largest	7.783
First Quartile	1793	First Quartile	7.491
Median	2115	Median	7.648
Third Quartile	2828	Third Quartile	7.943
Mean	2245	Mean	7.694
SD	559.2	SD	0.242
Coefficient of Variation	0.249		
Skewness	0.811		
Background Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.889	Shapiro Wilk Test Statistic	0.895
Shapiro Wilk Critical Value		Shapiro Wilk Critical Value	0.748
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	4572	95% UTL with 90% Coverage	6022
95% UPL (t)	3716	95% UPL (t)	4155
90% Percentile (z)	2962	90% Percentile (z)	2995
95% Percentile (z)	3165	95% Percentile (z)	3271
99% Percentile (z)		99% Percentile (z)	3859
Gamma Distribution Test		Data Distribution Test	
k star	5.772	Data appear Normal at 5% Significance Level	
Theta Star	388.9	,,	
nu star	46.18		
A-D Test Statistic	0.379	Nonparametric Statistics	
5% A-D Critical Value	0.657	90% Percentile	2970
K-S Test Statistic	0.306	95% Percentile	2970
5% K-S Critical Value	0.394	99% Percentile	2970
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution		95% UTL with 90% Coverage	2970
90% Percentile	3495	95% Percentile Bootstrap UTL with 90% Coverage	2970
95% Percentile	3970	,	2970
99% Percentile	4967	•	2970
		95% Chebyshev UPL	4970
		Hanna Thurshold Limit Board was IAB	4000

Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV

Upper Threshold Limit Based upon IQR

4380

A

~.	٠

Total Number of Samples	14	Number of Unique Samples	14
Raw Statistics		Log-Transformed Statistics	
Minimum	4 74	Minimum	0.536
Maximum		Maximum	3.077
Second Largest		Second Largest	3.077 2.797
First Quartile		First Quartile	1.451
Median		Median	2.229
Third Quartile		Third Quartile	2.229
		Mean	
Mean			2.061
SD Coefficient of Verlotter	5.824		0.737
Coefficient of Variation	0.6		
Skewness	0.5		
Background Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.962	Shapiro Wilk Test Statistic	0.946
Shapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	22	95% UTL with 90% Coverage	37.18
95% UPL (t)	20.39	95% UPL (t)	30.34
90% Percentile (z)	17.18	90% Percentile (z)	20.2
95% Percentile (z)	19.29	95% Percentile (z)	26.41
99% Percentile (z)	23.26	99% Percentile (z)	43.64
Gamma Distribution Test		Data Distribution Test	
k star	2.019	Data appear Normal at 5% Significance Level	
Theta Star	4.812		
nu star	56.52		
A-D Test Statistic	0.206	Nonparametric Statistics	
5% A-D Critical Value		90% Percentile	19.05
K-S Test Statistic		95% Percentile	21.7
5% K-S Critical Value		99% Percentile	21.7
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution		95% UTL with 90% Coverage	21.7
90% Percentile	18.85	95% Percentile Bootstrap UTL with 90% Coverage	21.7
95% Percentile		95% BCA Bootstrap UTL with 90% Coverage	19.58
99% Percentile	32.11		21.7
O TO TOTALIO	Ja. 1 1	95% Chebyshev UPL	35.99
		Upper Threshold Limit Based upon IQR	29.65
		, ,	

Pb

General Statistics Total Number of Samples	20	Number of Unique Samples	19
·			
Raw Statistics Minimum	4 74	Log-Transformed Statistics Minimum	0.500
Maximum		Maximum	0.536
Second Largest			2.833
First Quartile		Second Largest First Quartile	2.747
Median		Median	1.288
Third Quartile		Third Quartile	1.913 2.346
Mean	7.493		1.847
SD	4.258		0.615
Coefficient of Variation	0.568	30	0.015
Skewness	0.718		
Olewinoss .	0.710		
Background Statistics		150 17 17 17	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.956
Shapiro Wilk Critical Value	0.905	Shapiro Wilk Critical Value	0.905
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	15.69	95% UTL with 90% Coverage	20.74
95% UPL (t)	15.04	95% UPL (t)	18.87
90% Percentile (z)	12.95	90% Percentile (z)	13.95
95% Percentile (z)	14.5	95% Percentile (z)	17.45
99% Percentile (z)	17.4	99% Percentile (z)	26.54
Gamma Distribution Test		Data Distribution Test	
k star	2.716	Data appear Normal at 5% Significance Level	
Theta Star	2.759		
nu star	108.6		
A-D Test Statistic	0.404	Nonparametric Statistics	
5% A-D Critical Value	0.747	90% Percentile	15.14
K-S Test Statistic	0.134	95% Percentile	16.93
5% K-S Critical Value	0.195	99% Percentile	17
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution		95% UTL with 90% Coverage	17
90% Percentile	13.59	<u> </u>	17
95% Percentile	16.19		15.6
99% Percentile	21.85		16.93
		95% Chebyshev UPL	26.51
		Upper Threshold Limit Based upon IQR	20.65
Note: UPL (or upper percentile for gamma distributed data) rep	nresents a r	preferred estimate of BTV	

Hg

General Statistics			
Total Number of Samples	18	Number of Unique Samples	16
,			
Raw Statistics		Log-Transformed Statistics	
Minimum	0.0053	Minimum	-5.24
Maximum	0.12	Maximum	-2.12
Second Largest	0.1	Second Largest	-2.303
First Quartile	0.0198	First Quartile	-3.931
Median		Median	-2.979
Third Quartile	0.085	Third Quartile	-2.465
Mean	0.0527		-3.261
SD	0.0353		0.934
Coefficient of Variation	0.67		
Skewness	0.305		
B () B ()			
Background Statistics		I am a grant Distribution Tout	
Normal Distribution Test	0.047	Lognormal Distribution Test	0.040
Shapiro Wilk Cattle Volve		Shapiro Wilk Test Statistic Shapiro Wilk Critical Value	0.913 0.897
Shapiro Wilk Critical Value Data appear Normal at 5% Significance Level	0.097	Data appear Lognormal at 5% Significance Level	0.897
Data appear Norma: at 5% Significance Level		Data appear Logitornia at 5 % Significance Lever	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	0.122	95% UTL with 90% Coverage	0.242
95% UPL (t)	0.116	95% UPL (t)	0.204
90% Percentile (z)	0.0978	90% Percentile (z)	0.127
95% Percentile (z)	0.111	95% Percentile (z)	0.178
99% Percentile (z)	0.135	99% Percentile (z)	0.337
Gamma Distribution Test		Data Distribution Test	
k star		Data appear Normal at 5% Significance Level	
Theta Star	0.0357		
nu star	53.1		
A-D Test Statistic	0.357	Nonparametric Statistics	
5% A-D Critical Value		90% Percentile	0.102
K-S Test Statistic		95% Percentile	0.12
5% K-S Critical Value		99% Percentile	0.12
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution		95% UTL with 90% Coverage	0.12
90% Percentile	0.11	95% Percentile Bootstrap UTL with 90% Coverage	0.12
95% Percentile	0.138	95% BCA Bootstrap UTL with 90% Coverage	0.12
99% Percentile	0.201	95% UPL	0.12
		95% Chebyshev UPL.	0.211
		Upper Threshold Limit Based upon IQR	0.183

Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV

General Statistics Total Number of Samples	18	Number of Unique Samples	16
Raw Statistics		Log-Transforméd Statistics	
Minimum	0.13	Minimum	-2.04
Maximum	1.3	Maximum	0.262
Second Largest	1.1	Second Largest	0.0953
First Quartile	0.36	First Quartile	-1.022
Median	0.49	Median	-0.714
Third Quartile	0.9	Third Quartile	-0.105
Mean		Mean	-0.686
SD	0.333		0.646
Coefficient of Variation	0.557		
Skewness	0.547		
Background Statistics			
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.936	Shapiro Wilk Test Statistic	0.931
Shapiro Wilk Critical Value	0.897	Shapiro Wilk Critical Value	0.897
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	1.255	95% UTL with 90% Coverage	1.802
95% UPL (t)	1.193	95% UPL (t)	1.597
90% Percentile (z)	1.025	90% Percentile (z)	1.152
95% Percentile (z)	1.146	95% Percentile (z)	1.457
99% Percentile (z)	1.372	99% Percentile (z)	2.262
Gamma Distribution Test		Data Distribution Test	
k star	2.586	Data appear Normal at 5% Significance Level	
Theta Star	0.231		
nu star	93.1		
A-D Test Statistic	0.368	Nonparametric Statistics	
5% A-D Critical Value	0.746	90% Percentile	1.12
K-S Test Statistic	0.133	95% Percentile	1.3
5% K-S Critical Value	0.205	99% Percentile	1.3
Data appear Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution		95% UTL with 90% Coverage	1.3
90% Percentile	1.096	95% Percentile Bootstrap UTL with 90% Coverage	1.3
95% Percentile	1.311	95% BCA Bootstrap UTL with 90% Coverage	1.3
99% Percentile	1.779	95% UPL	1.3
		95% Chebyshev UPL	2.089
		Upper Threshold Limit Based upon IQR	1.71
Note: UPL (or upper percentile for gamma distributed data) rep	resents a	preferred estimate of BTV	

Ag

General Statistics			
Total Number of Samples	14	Number of Unique Samples	13
Raw Statistics		Log-Transformed Statistics	
Minimum		Minimum	-3.912
Maximum		Maximum	0
Second Largest		Second Largest	0
First Quartile		First Quartile	-3.1
Median		Median	-0.81
Third Quartile		Third Quartile	-0.148
Mean		Mean	-1.433
SD	0.378		1.467
Coefficient of Variation	0.821		
Skewness	0.184		
B. J. (10) (17)			
Background Statistics		Language Diskip, Kan Tank	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.839
Shapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
Data appear Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% UTL with 90% Coverage	1.258	95% UTL with 90% Coverage	5.261
95% UPL (t)		95% UPL (t)	3.51
90% Percentile (z)		90% Percentile (z)	1.563
95% Percentile (z)		95% Percentile (z)	2.663
99% Percentile (z)		99% Percentile (z)	7.237
· ,		,,	
Gamma Distribution Test		Data Distribution Test	
k star	0.747	Data appear Normal at 5% Significance Level	
Theta Star	0.617		
nu star	20.91		
A-D Test Statistic	0.731	Nonparametric Statistics	
5% A-D Critical Value		90% Percentile	1
K-S Test Statistic		95% Percentile	1
5% K-S Critical Value		99% Percentile	1
Data appear Gamma Distributed at 5% Significance Level	0.200		•
Assuming Gamma Distribution		95% UTL with 90% Coverage	1
90% Percentile		95% Percentile Bootstrap UTL with 90% Coverage	1
95% Percentile		95% BCA Bootstrap UTL with 90% Coverage	1
99% Percentile	2.465	95% UPL	1
		95% Chebyshev UPL	2.167
		Upper Threshold Limit Based upon IQR	2.088
Note: UPL (or upper percentile for gamma distributed data) repre	esents a	preferred estimate of BTV	
2. 2 (or apper percentate for garmina distributed data) (epit	Joine a	province dominate of D17	

Opening Chattables		
General Statistics Total Number of Samples	14 Number of Unique Samples	14
Por Obstation		
Raw Statistics Minimum	Log-Transformed Statistics	0.040
Maximum	10.1 Minimum 96 Maximum	2.313
Second Largest		4.564 4.363
First Quartile	78.5 Second Largest 17.55 First Quartile	2.864
Median	28.2 Median	2.004 3.318
Third Quartile	56.13 Third Quartile	4.027
Mean	37.46 Mean	3.413
SD	25.97 SD	0.671
Coefficient of Variation	0.693	0.071
Skewness	1.155	
ORCWINGS5	1.700	
Background Statistics		
Normal Distribution Test	Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.866 Shapiro Wilk Test Statistic	0.96
Shapiro Wilk Critical Value	0.874 Shapiro Wilk Critical Value	0.874
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
95% UTL with 90% Coverage	92.24 95% UTL with 90% Coverage	124.9
95% UPL (t)	85.08 95% UPL (t)	103.8
90% Percentile (z)	70.75 90% Percentile (z)	71.7
95% Percentile (z)	80.19 95% Percentile (z)	91.48
99% Percentile (z)	97.89 99% Percentile (z)	144.5
Gamma Distribution Test	Data Distribution Test	
k star	2.036 Data appear Gamma Distributed at 5% Significance Level	
Theta Star	18.4	
nu star	57.02	
A-D Test Statistic	0.409 Nonparametric Statistics	
5% A-D Critical Value	0.744 90% Percentile	87.25
K-S Test Statistic	0.202 95% Percentile	96
5% K-S Critical Value	0.231 99% Percentile	96
Data appear Gamma Distributed at 5% Significance Level		
Assuming Gamma Distribution	95% UTL with 90% Coverage	96
90% Percentile	72.55 95% Percentile Bootstrap UTL with 90% Coverage	96
95% Percentile	88.36 95% BCA Bootstrap UTL with 90% Coverage	96
99% Percentile	123.4 95% UPL	96
22.0. 5.5511110	95% Chebyshev UPL	154.7
	Upper Threshold Limit Based upon IQR	114
	r · · · · · · · · · · · · · · · · · · ·	

Note: UPL (or upper percentile for gamma distributed data) represents a preferred estimate of BTV

Table E-4
Two Sample Hypothesis Testing: Arsenic and Cadmium - ProUCL output

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs Non-parametric Quantile Hypothosis Test for Full Dataset (No NDs)

User Selected Options
From File WorkSheet.wst
Full Precision OFF

Confidence Coefficient 95% Substantial Difference 0

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: As-INV Background Data: As-BKG

Raw Statistics

	Site	Background
Number of Valid Samples	8	7 18
Number of Distinct Samples	6	5 18
Minimum	1.67	5 1.71
Maximum	6	5 13.7
Mean	9.4	7.24
Median	7.5	3 6.605
SD	9.02	3.97
SE of Mean	0.96	3 0.936

Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Site or AOC <= Mean/Median of Background

Site Rank Sum W-Stat	4695
WMW Test U-Stat	867
WMW Critical Value (0.050)	1442
Approximate P-Value	0.239

Conclusion with Alpha = 0.05

Do Not Reject H0, Conclude Site <= Background

User Selected Options

From File WorkSheet.wst
Full Precision OFF

Confidence Coefficient 95

Null Hypothesis Site or AOC Concentration Less Than or Equal to Background Concentration (Form 1)

Alternative Hypothesis Site or AOC Concentration Greater Than Background Concentration

Area of Concern Data: As-INV Background Data: As-BKG

Raw Statistics

	Site	Background
Number of Valid Samples	8	7 18
Number of Distinct Samples	6	6 18
Minimum	1.67	5 1.71
Maximum	6	5 13.7
Mean .	9.4	4 7.24
Median	7.3	3 6.605
SD	9.02	3.97
SE of Mean	0.96	3 0.936

Quantile Test

H0: Site Concentration <= Background Concentration (Form 1)

Approximate R Value (0.053)	13
Approximate K Value (0.053)	13
Number of Site Observations in 'R' Largest	11
Calculated Alpha	0.0733

Conclusion with Alpha = 0.053

Do Not Reject H0, Perform Wilcoxon-Mann-Whitney Ranked Sum Test

Table E-4
Two Sample Hypothesis Testing: Arsenic and Cadmium - ProUCL output

n Test for Full Data Sets without NDs Non-parametric Quantile Hypothosis Test for Full Datacet (No NDs)

User Selected Options User Selected Options From File WorkSheet.wst From File WorkSheet.wst Full Precision OFF Full Precision OFF Confidence Coefficient 95% Confidence Coefficient Substantial Difference Null Hypothesis Site or AOC Concentration Less Than or Equal to Background Concentration (Form 1)

Selected Null Hypothesis
Alternative Hypothesis
Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)
Alternative Hypothesis
Site or AOC Concentration Greater Than Background Concentration
Site or AOC Mean/Median Greater Than Background Mean/Median

·

0.0484

0.0248

Area of Concern Data: Cd-INV Background Data: Cd-BKG

Raw Statistics Site Background Number of Valid Samples 82 17 Number of Distinct Samples 53 17 Minimum 0.031 0.16 Maximum 2.5 0.52 Mean 0.372 0.329 Median 0.245 0.339 SD 0.438 0.102

Wilcoxon-Mann-Whitney (WMW) Test

SE of Mean

H0: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 3968

 WMW Test U-Stat
 564.5

 WMW Critical Value (0.050)
 1278

 Approximate P-Value
 0.891

Conclusion with Alpha = 0.05

Do Not Reject H0, Conclude Site <= Background

Area of Concern Data: Cd-INV Background Data: Cd-BKG

Raw Statistics

	Site		Background
Number of Valid Samples		82	17
Number of Distinct Samples		53	17
Minimum		0.031	0.16
Maximum .		2.5	0.52
Mean		0.372	0.329
Median		0.245	0.339
SD		0.438	0.102
SE of Mean	C	.0484	0.0248

Quantile Test

H0: Site Concentration <= Background Concentration (Form 1)

Approximate R Value (0.049)	16
Approximate K Value (0.049)	16
R Value Adjusted for Ties in Data	18
K Value Adjusted for Ties in Data	18
Number of Site Observations in 'R' Largest	16
Calculated Alpha	0.0369

Conclusion with Alpha = 0.049

Do Not Reject Ho, Perform Wilcoxon-Mann-Whitney Ranked Sum Test